

 La récursivité
Langages et programmation

NSI - Tle
TD de renforcement

Contenu : Récursivité.
Capacités attendues : Écrire un programme récursif.
Analyser le fonctionnement d’un programme récursif.

1. Exercice 1

On rappelle qu'un nombre entier compris entre 0 et 127 peut être codé sur 8 bits. Voici une fonction mystère nommée myst2 qui prend en

argument une liste d'entiers naturels compris entre 0 et 127 :

def myst2(l: list) -> int:
 if l==[]:
 return 0
 else:
 l.pop(0) # on supprime le premier élément de la liste l
 return 8 + myst2(l)

a. Pourquoi cette fonction myst2 est une fonction récursive ?
b. Tester cette fonction avec quelques listes, dont [3], [127], [3,7], [3,100,75,7,0].
c. Quel est le rôle de cette fonction myst2 ?

2. Exercice 2

a. Écrire une fonction récursive somme qui prend comme argument un entier non nul n et qui renvoie la somme de tous les nombres entiers

compris entre 1 et n.
b. Quelle est la condition d'arrêt de cette fonction récursive ?
c. Pourquoi pouvez-vous être certain.e.s que la situation de terminaison sera atteinte après un nombre fini d'appels récursifs ?
d. Rajouter une précondition.

3. Exercice 3

On considère désormais que les couples de lapins sont mortels de sorte que la suite ln est modifiée ainsi :
Si on note ln le nombre de lapins au bout de n mois, on peut modéliser le problème "pratique" par une suite (ln). Cette suite (ln) est définie par
la relation de récurrence suivante :

Écrire une fonction récursive lapins qui prend comme argument un entier naturel n et qui renvoie le nombre de lapins ln

4. Exercice 4

Le but est d'écrire une fonction récursive somme qui prend en argument une liste de nombres et qui renvoie la somme de ces nombres.
Quel cas simple peut correspondre à une condition d'arrêt pour cette fonction ?
Pour le cas général, proposez un appel récursif à la fonction somme où la liste est diminuée d'un élément.

Vous pouvez vous aider en utilisant le slicing :
liste[1:] correspond à la liste initiale où le premier élément a été ôté.

 La récursivité
Langages et programmation

NSI - Tle
TD de renforcement

Contenu : Récursivité.
Capacités attendues : Écrire un programme récursif.
Analyser le fonctionnement d’un programme récursif.

Correction partielle :

def somme(liste: list) -> int:

 if len(liste) == 0: # condition d'arrêt : liste vide

 return 0

 else: # cas général

 return liste[0] + somme(liste[1:]) # on ajoute à la première
valeur la somme de toutes les autres valeurs.

1. Testez votre fonction somme.

Vous devez par exemple obtenir comme exécution de somme([1,2,3]) le nombre 6.

2. Quelle suite de nombres entiers strictement décroissante peut être exhibée ici afin
de justifier la terminaison de l'algorithme écrit ?

On veut obtenir une fonction inverser qui inverse une chaîne de caractères ; par
exemple, inverser("aBc45f!") renvoie "!f54cBa". Pour cela, la fonction extrait le premier
élément puis fait un appel récursif (à elle-même) pour ajouter à la fin cet élément extrait.
Voici une partie du script de cette fonction inverser :

On admet que ch[1:] correspond à la chaîne de caractère ch auquel le premier élément, celui ch[0],
a été ôté.
Par exemple, si ch="aBc45f!", alors ch[1:] correspond à "Bc45F!"

def inverser(ch: str) -> str:

 n = len(ch)

 return inverser(ch[1:]) + ch[0] # on ajoute le premier terme au
résultat de l'inversion du reste de la chaîne

1. Le script précédent est-il fonctionnel ? Pourquoi ?

Si vous n'arrivez pas à répondre à la question, exécutez le code précédent et s'il ne fonctionne
pas lisez l'éventuel message d'erreur renvoyé par l'interpréteur.

2. Rajoutez une condition d'arrêt à ce script pour le rendre fonctionnel.

Pensez au cas le plus simple d'une chaîne de caractères à inverser.

 La récursivité
Langages et programmation

NSI - Tle
TD de renforcement

Contenu : Récursivité.
Capacités attendues : Écrire un programme récursif.
Analyser le fonctionnement d’un programme récursif.

3. Testez votre script augmenté d'une condition d'arrêt.

Exemple d'exécution à obtenir:

>>>inverser("aBc45f!"")

"!f54cBa"

On appelle palindrome un mot (ou une phrase) qui se lit de la même façon à de gauche
à droite comme de droite à gauche, si on ne tient pas compte des espaces.
Exemples :

• "KAYAK" est un palindrome,

• La phrase "ESOPE RESTE ICI ET SE REPOSE" est aussi un palindrome,
puisqu'en ôtant les espaces on a la chaîne devient
"ESOPERESTEICIETSEREPOSE".

• Par contre, "AIMA" n'est pas un palindrome car "AIMA" est différent de "AMIA".

Voici une partie d'une fonction est_palindrome qui prend comme argument une chaîne de
caractères (sans espace) et qui renvoie un booléen : True si le mot saisi comme argument
est un palindrome, False sinon.

def est_palindrome(ch: str) -> bool:

 bool = True

 n = len(ch)

 if ch[0]==ch[n-1]: # caractères extrêmes de la chaîne égaux

 ch2 = ch[1:n-1] # chaîne de caractères extraites de ch où le
premier caractère (ch[0]) et le dernier (ch[n-1]) ne sont plus pris.

 return est_palindrome(ch2)

 else:

 bool = False

 return bool

Rajouter une condition d'arrêt à cette fonction et modifier le code précédent afin de rendre
fonctionnelle la fonction est_palindrome.

 La récursivité
Langages et programmation

NSI - Tle
TD de renforcement

Contenu : Récursivité.
Capacités attendues : Écrire un programme récursif.
Analyser le fonctionnement d’un programme récursif.

