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La récursivité 

Langages et programmation 
NSI - Tle 

TD 
Contenu :  Récursivité. 

Capacités attendues :  Écrire un programme récursif. 
Analyser le fonctionnement d’un programme récursif. 

I. Notion de récursivité - 1 

Écrire une procédure récursive nbre_positif() qui demande un nombre positif à l’utilisateur et qui affichera ce nombre que s’il est positif. Sinon, 

demander à l’utilisateur de recommencer. 

II. Notion de récursivité - 2 

Vous avez déjà beaucoup travaillé avec la fonction puissance qui renvoie xn. 

def puissance (x : float, n : int) -> float: 
 if n==0 : 
  return 1 
 else : 
 return x*puissance_rec(x, n-1)  

Le but est de créer une fonction récursive somme_puissance_rec qui permet d'obtenir la somme 1 + x1 + x2 +...+ xn−1 + xn , sachant que x, un réel, 
et n , un entier naturel, sont deux arguments de cette fonction. 
Créer une telle fonction somme_puissance_rec qui est récursive et qui peut aussi faire appel à la fonction puissance_rec. 

III. Notion de récursivité - 3 

Écrire une procédure récursive qui affiche un triangle rempli d’étoiles (*) sur un nombre de lignes donné passé en paramètre, exemple avec 6 lignes: 

 
On demandera à l'utilisateur combien de lignes il souhaite. 

IV. Notion de récursivité - 4 

Une espèce de papillon est désormais considérée comme menacée en France. L'espace protégé où il vit, cherche à y maintenir, voire à y développer 
la population grâce à un dispositif mis en place à partir de 2020. 
En 2020, la population de fadets des tourbières est estimée à 150 individus dans l'espace protégé. On note nb_fadet(n) la population de papillon de 
cette espèce vivant dans l'espace protégé n années après 2020. Les écologues responsables du dispositif espèrent que chaque année 80% de la 
population précédente reste et que 50 individus s'installent dans l'espace protégé.  
On peut donc écrire cette relation ainsi : nb_fadet(n+1) = 0,8 × nb_fadet(n) + 50 
 

1. En admettant cette relation, proposer une fonction recursive nb_fadet qui prend comme argument l'entier naturel n et renvoie la 
population nb_fadet(n) estimée pour l'année 2020 + n. 

2. Au vu du modèle, peut-on espérer une sauvegarde de l'espèce dans la zone protégée ? 

V. Notion de récursivité - 5 

Écrire une fonction récursive inverse() qui prend en paramètre une chaine de caractères chaine et renvoie la chaine obtenue en inversant l'ordre 
des caractères. Par exemple, inverse("azerty") a pour valeur la chaine "ytreza". On pourra utiliser le fait que chaine[1:] correspond à la chaîne de 
caractères chaine  privée du premier caractère, chaîne éventuellement vide. 

VI. Pile d'exécution 

Le mathématicien Lothar Collatz a inventé il y a près d'un siècle la suite mathématique suivante : Prendre un nombre entier au hasard. S'il est pair 
le diviser par 2, sinon, le multiplier par 3 et ajoutez 1. Répéter ensuite l'opération. 
Cette suite peut être écrite mathématiquement par la relation de récurrence suivante :un+1={un2,si n est pair.3×un+1,si n est 
impair.un+1={un2,si n est pair.3×un+1,si n est impair. 
Collatz puis de nombreux mathématiciens ont cherché à prouver que quel que soit le nombre de départ choisi, on arrivera à la valeur 1 donc à la 
répétition infinie 4, 2, 1. Ce résultat non encore démontré est appelée conjecture de Syracuse 

https://fr.wikipedia.org/wiki/Lothar_Collatz
https://fr.wikipedia.org/wiki/Conjecture_de_Syracuse
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Cette conjecture mobilisa tant les mathématiciens durant les années 1960, en pleine guerre froide, qu'une plaisanterie courut selon laquelle ce 
problème faisait partie d'un complot soviétique visant à ralentir la recherche américaine. 

1. Proposez une fonction récursive syracuse qui prend en paramètre un entier naturel n et qui renvoie la liste de toutes les valeurs prises 
par le suite jusqu'à atteindre la valeur 1. 

• Tester votre fonction Syracuse avec n=15 entre autres et vous devez obtenir l'affichage suivant : 

>>>syracuse(15) 
[15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1] 

• Vous pourrez utilisez la méthode extend : liste1.extend(liste2) permet de rajouter en fin de liste1 tous les éléments de la 
liste liste2. 

2. On appelle temps de vol le plus petit indice p tel que up=1.  
Proposer une fonction temps_vol qui prend en paramètre un entier n et qui renvoie le premier indice où la suite de Syracuse prend la 
valeur 1 si on part de la valeur n. 
Tester votre fonction temps_vol avec différentes valeurs de n puis avec le nombre 12235060455 ; que se passe-t-il dans ce dernier cas ? 

VII. Notion de récursivité - 6 

Pour convertir un nombre entier positif n de la base décimale à la base binaire, il suffit d'effectuer des divisions successives du nombre n par 2. La 
liste des restes des divisions constitue la représentation binaire. 
Écrire une fonction récursive dec_vers_bin renvoyant la liste donnant une représentation binaire d’un nombre n saisi comme argument. 

VIII. Notion de récursivité - 7 

Rappel ! 
La factorielle d'un entier naturel n non nul, notée n!, est le produit de tous les nombres entiers compris entre 1 et n, c'est-à-dire :  
n! = 1 × 2 × ... × (n−1) × n 
Exemples : 4! = 1 × 2 × 3 × 4 = 24,  6! = 1 × 2 × 3 × 4 × 5 × 6 = 720  et 1! = 1. 

Il existe une relation "simple" entre n! et (n−1)! 
En effet :  n! = 1 × 2 × ... × (n−1) × n = 1 × 2 × ... × (n−1) (n−1)! × n = (n−1)! × n  
En sciences, la fonction exponentielle est très importante. On admet que la valeur de cette fonction en 1 est notée 𝑒1 et que sa valeur peut être vue 

comme égale à la somme infinie : 1 +
1

1!
+

1

2!
+⋯+

1

𝑛!
  où n va tendre vers +∞. 

1. Écrire une fonction récursive inv_fact qui prend comme argument l'entier non nul n et qui renvoie 
1

𝑛!
 : 

2. Quelle est la condition d'arrêt de votre fonction récursive ? 
3. Pourquoi peut-on être certain que la situation de terminaison sera atteinte après un nombre fini d'appels récursifs ? 

4. Écrire une procédure qui affiche une valeur approchée de 𝑒1 sachant que 𝑒1 ≅ 1 +
1

1!
+

1

2!
+⋯+

1

25!
 

IX. Calcul de chemin 

On considère un tableau de nombres de n lignes et p colonnes. 
Les lignes sont numérotées de 0 à n - 1 et les colonnes sont numérotées de 0 à p - 1.  
La case en haut à gauche est repérée par (0; 0) et la case en bas à droite par (n - 1; p - 1). 
On appelle chemin une succession de cases allant de la case (0; 0) à la case (n - 1; p - 1), en n’autorisant que des déplacements case par case : soit 
vers la droite, soit vers le bas. 
On appelle somme d’un chemin la somme des entiers situés sur ce chemin. 
Par exemple, pour le tableau T suivant : 

4  1  1  3 
2  0  2  1 
3  1  5  1 

• Un chemin est (0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 3) (en gras sur le tableau) 

• La somme du chemin précédent est 14 

• (0, 0), (0, 2), (2, 2), (2, 3) n’est pas un chemin 
L’objectif de cet exercice est de déterminer la somme maximale pour tous les chemins possibles allant de la case (0; 0) à la case (n - 1; p - 1). 

1. On considère tous les chemins allant de la case (0, 0) à la case (2, 3) du tableau T donné en exemple. 
a. Un tel chemin comprend nécessairement 3 déplacements vers la droite. Combien de déplacements vers le bas comprend-il ? 

 
Pour aller de la case (0, 0) à la case (2, 3) on fait 3 déplacements vers la droite et 2 vers le bas. 
 

b. La longueur d’un chemin est égal au nombre de cases de ce chemin. Justifier que tous les chemins allant de (0, 0) à (2, 3) ont une 
longueur égale à 6. 

 
Comme on fait des déplacements de 1 pas à chaque étape, il faut faire 2 + 3 = 5 déplacements. Chaque déplacement nous amène sur une 
nouvelle case. En n’oubliant pas d’inclure la case (0, 0) il faut donc parcourir 2 + 3 + 1 = 6 cases 
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2. En listant tous les chemins possibles allant de (0, 0) à (2, 3) du tableau T, déterminer un chemin qui permet d’obtenir la somme maximale 
et la valeur de cette somme. 

Chemin  Somme 
(0, 0) → (0, 1) → (0, 2) → (0, 3) → (1, 3) → (2, 3)  11 
(0, 0) → (0, 1) → (0, 2) → (1, 2) → (1, 3) → (2, 3)  10 
(0, 0) → (0, 1) → (0, 2) → (1, 2) → (2, 2) → (2, 3)  14 
(0, 0) → (0, 1) → (1, 1) → (1, 2) → (1, 3) → (2, 3)  9 
(0, 0) → (0, 1) → (1, 1) → (1, 2) → (2, 2) → (2, 3)  12 
(0, 0) → (0, 1) → (1, 1) → (2, 1) → (2, 2) → (2, 3)  12 
(0, 0) → (1, 0) → (1, 1) → (1, 2) → (1, 3) → (2, 3)  10 
(0, 0) → (1, 0) → (1, 1) → (1, 2) → (2, 2) → (2, 3)  14 
(0, 0) → (1, 0) → (1, 1) → (2, 1) → (2, 2) → (2, 3)  13 
(0, 0) → (1, 0) → (2, 0) → (2, 1) → (2, 2) → (2, 3)  16 
La somme maximale est donc de 16. 

3. On veut créer le tableau T’ où chaque élément T’[i][j] est la somme maximale pour tous les chemins possibles allant de (0, 0) à (I, j). 
a. Compléter et recopier sur votre copie le tableau T’ donné ci-dessous associé au tableau T = 

4  1  1  3 
2  0  2  1 
3  1  5  1 

T’ = 
4  5  6  ? 
6  ?  8  10 
9  10  ?  16 

Le tableau T' est le suivant : 

4  5  6  9 

6  10 8  10 

9  10  15 16 

 
b. Justifier que si j est différent de 0, alors : T’ [ 0 ] [ j ] = T [ 0 ] [ j ] + T’ [ 0 ] [ j-1 ] 

 

La valeur T'[0][j] où j est non nul correspond à la somme des cases (0, 0) à (0, j), c’est à dire des cases de la première ligne du tableau. 
Il n’y a qu’un seul chemin qui corresponde à cette somme et il passe obligatoirement par la case à gauche (d’indice j-1) de la case (0, j). 
Donc pour calculer la somme T'[0][j] on ajoute simplement la valeur de la case (0, j) (c’est à dire T[0][j]) à la somme obtenue à la case 
précédente (c’est à dire T'[0][j-1]). 

On a donc bien T'[0][j] = T[0][j]+T'[0][j-1]. 
 

4. Justifier que si i et j sont différents de 0, alors : T’ [ i ] [ j ] = T [ i ] [ j ] + max(T’ [ i-1 ] [ j ], T’ [ i ] [ j-1 ]) 

 

Si i et j son non-nuls, il y a deux chemins amenant à la case (i, j). Le premier provient de la case du dessus (i - 1, j), le second de la case de gauche 
(i, j - 1). 

La valeur de T'[i][j] s’obtient donc en ajoutant la valeur de T[i][j] au maximum des deux chemins menant à cette case : max(T'[i-1][j],T'[i][j-1]). 
 

5. On veut créer la fonction récursive somme_max ayant pour paramètres un tableau T, un entier i et un entier j. Cette fonction renvoie la 
somme maximale pour tous les chemins possibles allant de la case (0, 0) à la case (i, j).  
a. Quel est le cas de base, à savoir le cas qui est traité directement sans faire appel à la function somme_max ? Que renvoie-t-on dans 

ce cas ? 

Le cas de base est atteint lorsque l’on atteint un case de la première ligne (i vaut 0) ou de la première colonne (j vaut 0).  
Dans ce cas on calcule la somme en additionnant toutes les cases précédant la case en question sur la première ligne (si i vaut 0) ou sur la 
première colonne (si j vaut 0). 
 

b. À l’aide de la question précédente, écrire en Python la fonction récursive somme_max dans pyzo ou un notebook.. 
c. Quel appel de fonction doit-on faire pour résoudre le problème initial ? 

On appelle somme_max(T,2,3) 
 

X. Tours de Hanoï 

De nombreux jeu peuvent être résolu grâce à des algorithmes récursifs. Un des exemples 
courants utilisant la récursivité est le casse-tête des tours de Hanoï. 

Ce casse-tête est composé de trois tours et une pile de disques rangés du plus grand au 
plus petit. Les disques sont initialement empilés à gauche. Il faut réussir à déplacer cette 
pile entièrement sur la tour de droite. 
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Pour cela, il faut respecter les règles suivantes : 

• ne déplacer qu'un seul disque à la fois, 

• un disque ne peut pas être posé sur un disque plus petit. 
Afin de mieux comprendre le casse-tête, voici une animation venant de Wikipédia dans le cas où il y a 3 disques. 

Notons TOUR_1, TOUR_2 et TOUR_3 les trois emplacements des tours, TOUR_1 étant celle de gauche par exemple. 

 

Pour déplacer une tour de n disques de TOUR_1 vers TOUR_3, on effectue ces trois étapes : 

• déplacer la tour des n−1 premiers disques de TOUR_1 vers TOUR_2 ; 

 
• déplacer le plus grand disque de TOUR_1 vers TOUR_3 ; 

 
• déplacer la tour des n−1 premiers disques de TOUR_2 vers TOUR_3. 

 
Créer une fonction récursive hanoi(n,depart,inter,arrivee) où : 

• n est le nombre de disques à déplacer, 

• depart est la tour de départ ayant n disques, 

• inter est la tour intermédiaire que l'on peut utiliser pour déplacer, 

• arrivee est la tour ou doivent se trouver les n disques finalement. 
Cette fonction renverra une succession d'affichage expliquant à chaque fois la position de la pièce à déplacer puis la position où elle doit être 
déplacée. La deuxième étape correspondra à un affichage du type : print ("Déplacer ",...,"sur",...). on peut remarquer que lorsque n=0, il n’y a rien à 
faire. 
En exécutant hanoi(3,"TOUR_1","TOUR_2","TOUR_3"), vous devez obtenir la sortie suivante: 
Déplacer TOUR_1 sur TOUR_3 
Déplacer TOUR_1 sur TOUR_2 
Déplacer TOUR_3 sur TOUR_2 
Déplacer TOUR_1 sur TOUR_3 
Déplacer TOUR_2 sur TOUR_1 
Déplacer TOUR_2 sur TOUR_3 
Déplacer TOUR_1 sur TOUR_3 
Ce casse-tête a été inventé par le mathématicien français Édouard Lucas. Afin de mettre en valeur son jeu, il a aussi inventé une histoire fabuleuse. 
Il prétendit que dans le grand temple de Bénarès en Inde, centre du monde pour les hindouistes, ce dispositif du casse-tête était présent : Trois 
aiguilles de diamant y seraient plantées dans une dalle d'airain. Sur une de ces aiguilles, le dieu Brahma enfila au commencement des siècles, 64 
disques d'or pur, le plus large reposant sur l'airain, et les autres, de plus en plus étroits, superposés jusqu'au sommet. Nuit et jour, des prêtres se 
succèdent pour transporter la tour de la première aiguille sur la troisième, en respectant les règles fixes vues pour le casse-tête qui auraient été 
imposées par Brahma. Quand tout sera fini ce sera la fin des mondes. 
Ne bramez pas : "La fin du monde !" Rassurez-vous, à raison d'un déplacement par seconde, on peut montrer mathématiquement, qu'il faudrait au 
moins 584 milliards d'années pour pouvoir déplacer la tour de 64 disques. 
L'algorithme récursif précédent est très court et assez aisé à comprendre pourquoi il fonctionne. 
Il est possible d'écrire des algorithmes itératifs qui affichent aussi la succession des déplacements à effectuer. Cependant, leur écriture est plus 
compliquée, plus longue et il est plus difficile à comprendre pourquoi ils fonctionnent correctement.  

https://fr.wikipedia.org/wiki/%C3%89douard_Lucas

