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La récursivité 
Langages et programmation 

NSI - Tle 
COURS 

Contenu :  Récursivité. 

Capacités attendues :  Écrire un programme récursif. 

Analyser le fonctionnement d’un programme récursif. 

I. Exemple introductif 

Certains problèmes peuvent sembler difficile à résoudre d'emblée. Vous allez découvrir une manière d'écrire des algorithmes qui 
permet de résoudre élégamment certains problèmes. Voilà un outil puissant ! 

I.1. Exemple 1 : 

Soit une fonction puissance à créer, qui prend deux arguments x, un réel, et n, un entier naturel, et qui renvoie xn. 
Une méthode directe est de partir de 1 puis d'écrire une boucle répétitive qui permet d'aboutir par multiplications successives 

à xn en utilisant le fait que xn = x  xn−1  
Voici une possibilité : 

def puissance(x: float, n: int) -> float: 
    p = 1 
    for i in range(n): 
        p = x*p  
    return p     

Tester le code précédent dans PythonTutor pour vérifier que la fonction puissance renvoie bien xn. 
 
Mais si on faisait l'inverse ? On part de ce qui est compliqué xn et on voit comment simplifier progressivement pour arriver à 1 ! 

Cela est possible, toujours en utilisant le fait que :  𝑥𝑛 {
1 , si n = 0

𝑥 ∙ 𝑥n−1, sinon
 

Ainsi, on aurait l'idée d'écrire un programme comme celui ci-dessous : 

def puissance (x : float, n : int) -> float: 
    if n == 0 : 
        return 1 
    else : 
        return x*puissance(x,n-1)  

1. Réaliser une trace d'exécution de l'algorithme précédent avec x=2 et n=3. puissance(2,3) renvoie bien 2323 ? 
2. Recopier le script précédent puis tester-le plusieurs fois, par exemple avec x=2 et n=10. Est-ce que puissance(2,10) renvoie 

bien 210210. 
Aussi étonnant que cela puisse paraître de prime abord, cela fonctionne ! 
Nous avons ainsi créé une fonction puissance qui s'appelle elle-même : on appelle cela la récursivité. 

II. Notion de récursivité 

On qualifie de recursive toute fonction qui s'appelle elle-même. 

II.1. Exemple 2 

Outre l'exemple précédent, voici un deuxième exemple. 
Dans une grande boite de Pétri contenant un milieu nutritif riche sont déposées 10 bactéries. 
On suppose que chaque heure le nombre de bactéries est multiplié par 4. Voici une fonction récursive nb_bact qui renvoie le 
nombre de bactéries au bout de n jours, n étant un entier naturel saisi comme argument. 

def nb_bact(n : int) -> int: 
    if n == 0 : 
        return 10 
    else : 
        return 4*nb_bact(n-1)      

Cette fonction permet d'évaluer le nombre de bactéries au bout d'une journée (en supposant le milieu nutritif suffisant) : 

>>> nb_bact(24) 
2814749767106560          
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On peut y retrouver une suite : le nombre de bactéries au bout de n heures est donné par un. 
Cette suite (un) est définie par la relation de récurrence suivante : 

𝑈𝑛 {
10 , si n = 0

4 ∙ 𝑈𝑛−1, si n > 0
 

 
Le nombre de bactéries obtenu au bout de 24 heures s'écrit dans le langage des suites comme égale à u24. 
 
Les premiers langages de programmation qui ont autorisé l'emploi de la récursivité sont LISP, développé à partir de 1958, et Algol 60 
(à partir de 1960). Depuis, tous les langages de programmation généraux réalisent une implémentation de la récursivité. 

II.2. Exemple 3 

Repérer parmi les fonctions suivantes celles qui sont récursives : 

fonction f1 : 

def f1(n : int) -> int: 
 if n == 0 : 
 return 0 
 else : 
 return n-1 
          

fonction f2 : 

def f2(n : int) -> int: 
 if n == 0 : 
  return 0 
 else : 
  return f2(n-1) 
      

fonction f3 : 

def f3(n : int) -> int: 
 if n == 0 : 
  return f3(n-1) 
 else : 
  return 0 
 

fonction f4 : 

def f4(n : int) -> int: 
 if n == 0 : 
  return n-1 
 else : 
  return 0 
         

Voici une fonction mystère nommée myst : 

def myst(ma_liste : list) -> int: 
 if ma_liste == [] : 
  return 0 
 else:           
  ma_liste.pop(0)          # suppression du premier terme de la liste l 
  return 1+myst(ma_liste) 

      

1. Pourquoi cette fonction myst est une fonction récursive ? 
2. Tester cette fonction avec quelques listes. 
3. Quel est le rôle de cette fonction myst ? 
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III. Condition d'arrêt 

III.1. Exemple 4 

Exécuter le code suivant : 

def mauvais_exemple() -> None : 
    print("Mauvais exemple…") 
    return mauvais_exemple() 

Évidemment, comme prévu, ce programme ne s'arrête pas, car la fonction mauvais_exemple() est appelée à l'infini. L'exécution 
s'arrête d'elle-même (au bout de 1000 récurences). Nous sommes (volontairement) tombés dans un piège qui sera 
systématiquement présent lors d'une programmation récursive : le piège de la boucle infinie. 

Mais attention : la récursivité ne DOIT PAS être associée à une auto-référence vertigineuse : c'est en algorithmique une méthode 
(parfois) très efficace, à condition de respecter une règle cruciale : l'existence d'un CAS DE BASE.   
Ce "cas de base" sera aussi appelé "condition d'arrêt" ou encore "condition de terminaison", puisque la très grande majorité des 
algorithmes récursifs peuvent être perçus comme des escaliers qu'on dévale à toute vitesse, en déséquilibre jusqu'au sol qui assure 
notre arrêt. 

Lorsque nous allons programmer une fonction récursive, nous allons donc commencer par la fin, c'est-à-dire par le moment où elle 
renvoie effectivement un résultat. C'est le cas de base. Pour arriver progressivement vers la situation finale, chaque appel récursif se 
fera en décrémentant un paramètre : cela assurera l'arrêt du programme. 

III.2. Exemple 5 

def mystere(n): 
 if n == 0 : 
  return 0 
 else :  
  return n + mystere(n-1) 

Observer : 

• le cas de base (si n vaut 0 on renvoie vraiment une valeur, en l'occurence 0) 
• l'appel récursif 
• la décrémentation du paramètre d'appel : mystere(n-1) 

Cette fonction mystere(n) calcule la somme des entiers positifs inférieurs ou égaux à n. 

S’il est assez aisé de dérouler l’exécution de la définition avec une boucle, comment représenter l’exécution de la fonction? On peut 
remplacer l’appel de la fonction par le return qui sera obtenu, et continuer ainsi jusqu’à arriver au cas 0.  
Voici l’arbre d’appel de somme(4) : 

somme(4) 

 

return4 + somme(3) 

 

return3 + somme(2) 

 

return2 + somme(1) 

 

return1 + somme(0) 

 

return0 

Une fois arrivé à un cas de base, on remonte les valeurs obtenues au fur et à mesure. 

Return 0  

0 

Return 1 + somme(0)  

1 

Return 2 + somme(1)  

3 

Return 3 + somme(2)  

6 

Return 4 + somme(3)  

10  

somme(4) 
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La variable res de la version itérative correspond donc aux résultats successifs 

renvoyés par la version récursive. D’une certaine manière, la boucle calcule les 

résultats intermédiaires, en partant de 0. Cela revient à faire directement la 

remontée des valeurs, comme c’est le cas dans l’exemple ci-contre. 

somme(0) = 0  

somme(1) = 1 + somme(0) = 1  

somme(2) = 2+somme(1) = 3  

somme(3) = 3+somme(2) = 6  

somme(4) = 4+somme(3) = 10 

Attention ! L’existence d’une condition d’arrêt ne signifie pas que l’appel récursif s’arrête grâce à celle-ci. 

Prenons l’exemple de l’exécution de mystere(-1) : 
• mystere(-1) conduit par appel récursif à l'exécution de mystere(-2) 

• mystere(-2) conduit par appel récursif à l'exécution de mystere(-3) 

• mystere(-3) conduit par appel récursif à l'exécution de mystere(-4) 

• ... 

La condition d’arrêt n=0 n’est jamais atteinte et on obtient une suite infinie d’appels. 
Ainsi, il est important d'ajouter une précondition pour imposer que n soit un entier naturel. D'où : 

def mystere(n): 
 assert type(n) == int and n >=0, "Vous devez saisir un entier naturel" 
 if n == 0 : 
  return 0 
 else :  
  return n + mystere(n-1) 

À retenir ! 

Dans une fonction récursive, il faut s’assurer que la condition d’arrêt soit atteinte après un nombre fini d’appels. 
Cette condition d'arrêt ne peut en aucun cas être un appel récursif. 
Souvent, il est pertinent de choisir une condition d'arrêt correspondant à un "cas simple" pour lequel on connait la valeur à 
renvoyer. 

III.3. Exemple 6 

Revoici la fonction puissance vue à la fin du paragraphe I. : 

def puissance(x : float, n : int) -> float: 
    if n == 0 : 
        return 1 
    else : 
        return x*puissance(x,n-1) 

III.4. Exemple 7 

On veut réaliser un château de cartes géants qui prolonge le château de l'image ci-contre : 

On note n le nombre d'étages du château et nb_cartes(n)  le nombre de cartes nécessaires pour réaliser 
un château à n étages. 
On admet que l'on peut connaître le nombre nb_cartes(n) de cartes nécessaires pour un château à n 
étages si on connaît déjà le nombre nb_cartes(n-1) en utilisant la relation suivante (appelée relation de 
récurrence en mathématiques) :  

nb_cartes(n) = nb_cartes(n-1) + 2 + 3(n-1) 
On veut à partir de ces informations construire une fonction récursive nommée nb_cartes qui renvoie 
finalement le nombre nb_cartes(n) si on donne en argument le nombre n d'étages voulus au château. 

Voici un script incomplet pour cette fonction : 

def nb_cartes(n: int) -> int: 
    if ...........: # condition d'arrêt 
        return ............. 
    else:           # cas général 
        return ............. 
         

1. En s'aidant de la relation de récurrence liant nb_cartes(n) et  nb_cartes(n-1), compléter le retour du cas général. 
2. Déterminer quel cas simple correspond à la condition d'arrêt puis compléter son renvoi. 
3. Testez votre fonction obtenue. 

Vous pouvez utiliser l'image ci-dessus pour connaître quelques valeurs à obtenir. 

4. Rajouter une précondition pour assurer le bon fonctionnement de l'algorithme. 

• La condition d'arrêt est : n=0. 

• Cette condition correspond aussi au cas "simple" où 
x0 = 1 : on connaît le résultat à faire renvoyer par la 
fonction : 1. 
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Dans l'exercice précédent, on est certain que la récursion prend fin car chaque nouvel appel se fait avec un paramètre n qui 
diminue. 
Pour s'assurer de la terminaison d'un algorithme récursif, il suffit d'identifier une suite strictement décroissante d'entiers positifs ou 
nul. 

III.5. Exemple 8 

La factorielle d'un entier naturel n non nul, notée n!, est le produit de tous les nombres entiers compris entre 1 et n, c'est-à-dire :  

n! = 1 × 2 × ... × (n − 1) × n 
• 1! = 1 

• 4! = 1 × 2 × 3 × 4 = 24 

• 6! = 1 × 2 × 3 × 4 × 5 × 6 = 720 

Il existe une relation "simple" entre n! et (n−1)! 
En effet : n! = 1 × 2 × ... × (n − 1) × n = 1 × 2 × ... × (n − 1) × n = (n − 1)! × n 
 

(n − 1)! 

1. Écrire une fonction récursive fact qui prend comme argument l'entier non nul n et qui renvoie n! 
2. Quelle est la condition d'arrêt de la fonction récursive ? 
3. Comment être certain que la situation de terminaison sera atteinte après un nombre fini d'appels récursifs ? 
4. Rajouter une précondition. 

IV. Pile d'exécution 

Illustration sur l'exemple du paragraphe I 

Nous avons vu plusieurs exemples de fonctions récursives. Le but est de comprendre au niveau de la gestion de la mémoire, 
comment peut bien fonctionner la récursivité. 

Reprenons l'exemple initial sur la fonction récursive puissancec : 

def puissance (x : float, n : int) -> float: 
    if n == 0 : 
        return 1 
    else : 
        return x*puissance(x,n-1)      

Observer le déroulement de l'exécution de ce code étape par étape dans PythonTutor. 

Il est possible de décrire ainsi la succession des étapes : 

Appel à puissance_rec(2,4) 
 2*puissance_rec(2,3) = ? 
 Appel à puissance_rec(2,3) 
  2*puissance_rec(2,2) = ? 
  Appel à puissance_rec(2,2) 
    2*puissance_rec(2,1) = ? 
    Appel à puissance_rec(2,1) 
     2*puissance_rec(2,0) = ? 
     Appel à puissance_rec(2,0) 
     Retour de la valeur 1 
     2*1 
    Retour de la valeur 2 
   2*2 
  Retour de la valeur 4 
   2*4 
 Retour de la valeur 8 
 2*8 
Retour de la valeur 16 

On voit qu'il est nécessaire de mémoriser les paramètres et les résultats à retourner : on parle de pile d'exécution. 
Une pile d'exécution permet de mémoriser des informations sur les fonctions en cours d'exécution dans un programme. 
Le principe est le suivant : 

• l'instruction située en haut de la pile d'exécution est en cours d'exécution, 

• les instructions en dessous sont mises en pause dans l'attente de se retrouver au sommet de la pile d'exécution. 
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Voici une visualisation de ce qui se passe au niveau de la pile d'exécution lorsque l'on exécute le programme précédent : 

Concrètement, ce qui est stocké à chaque étage de la pile, c'est l'adresse mémoire de l'instruction à exécuter. Pour simplifier, ici 
c'est l'instruction qui est écrite. 

 

La première instruction puissance(2,4) est lancée. 

Comme celle-ci fait appel à puissance(2,3), puissance(2,3) est la nouvelle instruction exécutée tandis que puissance(2,4) est mise en 
pause. 

De même, celle-ci faisant appel à puissance(2,2), puissance(2,2) est la nouvelle instruction exécutée tandis que puissance(2,3) est 
mise en pause. 

Ces appels successifs se reproduisent conduisant à un nouvel étage de la pile d'exécution jusqu'à ce que l'instruction à exécuter 
devienne puissance(2,0) : il y a eu un empilement de 5 espaces-mémoire. 

L'instruction puissance(2,0) renvoie 1 (et clôt l'exécution de puissance(2,0)). 

 

Comme l'instruction puissance(2,0) a été exécutée, elle est dépilée et l'instruction puissance(2,1), qui avait mise en attente, est 
désormais exécuté avec la valeur renvoyée par puissance(2,0). 

 

L'instruction puissance(2,1) est désormais exécutée : elle renvoie la valeur 2 puis cette instruction est dépilée ; l'instruction suivante 
puissance(2,2) est exécutée. 

 

On poursuit l'exécution des instructions successives en dépilant progressivement la pile d'exécution. On obtient ainsi la visualisation 
suivant du dépilement complet : 

 

La pile d'exécution se ferme avec le renvoi de la valeur finale : 16. 
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V. Limitations 

Reprenons l'exemple initial sur la fonction récursive puissance vue au paragraphe I. 
En exécutant le code suivant, vous verrez apparaître un résultat : 

>>> puissance(2,965) 
3118500483647999705713082364120060259480392594430402408597730066308143581045256352788996821082243
2829520975731940507738187069343568649900949049559348200490942500088639860713695586526897568171674
7289586991334988123957939133612635998263883635695006899610487641699336881506618514879741251551232 

Quelle puissance ! 
Par contre, en exécutant le code suivant, vous verrez apparaître, entre autres, un message d'erreur : 

>>> puissance_rec(2,966) 
RecursionError: maximum recursion depth exceeded in comparison 

Le langage Python génère et gère automatiquement les espaces-mémoires de la partie dédiée de la mémoire physique de 
l’ordinateur : la pile d'exécution (ou pile de récursivité). 
Comme tout système physique, sa capacité est limitée. Par défaut, l'implémentation de Pyhton limite la hauteur de la pile de 
récursivité à 1000. 
Si l'exécution d'un appel récursif conduit à vouloir dépasser cette hauteur maximale, alors le message d'erreur RuntimeError: 
maximum recursion depth exceeded in comparison apparaît. 

VI. Que préférer entre un code impératif et un code récursif ? 
Tout algorithme récursif peut être transformé en un algorithme impératif. 
La fonction récursive suivante qui permet de savoir si un caractère c est présent dans la chaîne de caractères ch : 

def est_present(c : str, ch : str) -> bool: 
 if ch == "" : 
  return False                 # cas d'arrêt négatif 
 elif c == ch[0] : 
  return True                  # cas d'arrêt positif 
 else : 
  return est_present(c,ch[1:]) #un appel récursif qui est la dernière chose à effectuer 

peut facilement être réécrite en impératif : 

def est_present_iter(c : str, ch : str) -> bool: 
    bool = False 
    i = 0 
    while bool == False and i < len(ch) : 
        if c == ch[i] :  
            bool = True 
        i = i + 1 
    return bool 

Comme tout algorithme récursif peut être transformé en un algorithme impératif, qu'est-il préférable d'écrire ? 

Quelques avantages de la récursivité : 

• La récursivité ajoute de la simplicité (de la compacité) lors de l'écriture de code, ce qui facilite le débogage, 

• La récursivité est également préférée lors de la résolution de problèmes très complexes : une solution récursive décrit 
comment calculer la solution à partir d’un cas plus simple, au lieu de préciser chaque action à réaliser, on décrit ce qu’on 
veut obtenir, c’est ensuite au système de réaliser les actions nécessaires pour obtenir le résultat demandé. 

La récursivité a ses propres limites : 

• Les fonctions récursives requièrent généralement plus d’espace de mémoire. 

• Les récursions peuvent excéder la taille de la pile de récursivité : il y a alors un débordement de pile 

• Une fonction récursive peut être de plus grande compacité dans son écriture mais n'est pas forcément de plus 
petite complexité (en temps d'exécution ou en espace mémoire nécessaire). 

Conclusion : 

• si on recherche l’efficacité (une exécution rapide) et si le programme peut être écrit sans trop de difficultés en itératif, on 
préférera l’itératif. 

• on préfére la récursivité surtout dans les situations où la solution itérative est difficile à obtenir, par exemple : 
o si les structures de données manipulées sont récursives (ex les arbres). 
o si le raisonnement lui-même est récursif. (ex le jeu des tours de Hanoï, voir TD) 
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VII. Récursivité multiple et croisée 

VII.1. Récursivité multiple 

Un algorithme récursif est dit multiple si l’un des cas qu’il distingue se résout avec plusieurs appels récursifs. 

Considérons la suite dite de Fibonacci. 
Fibonacci a publié en 1202 un recueil de problèmes pratiques, le Liber abaci. Le but était d'exposer les applications pour le 
commerce de l'utilisation des chiffres arabes et des algorithmes arithmétiques permettant de calculer avec ces chiffres arabes. Ce 
livre a conduit à l'utilisation des chiffres arabes en Occident plutôt que des chiffres romains. 

Le problème le plus célèbre du Liber abaci est le suivant : Combien de couples de lapins aurons-nous à la fin de l'année si nous 
commençons avec un couple qui engendre chaque mois un autre couple qui procréé à son tour au bout de deux mois ? Cet énoncé 
sous-entend les conditions suivantes : 

1. La maturité sexuelle du lapin est atteinte après un mois qui est aussi la durée de gestation. 
2. Chaque portée comporte toujours un mâle et une femelle. 
3. Les lapins ne meurent pas !! 

Si on note lapin(n) le nombre de lapins au bout de n mois, on peut modéliser le problème "pratique" par une suite (lapin(n)). Cette 
suite (lapin(n)) est définie par la relation de récurrence suivante : 

𝑙𝑎𝑝𝑖𝑛(𝑛) =  {
1                                                      
1                                                      
𝑙𝑎𝑝𝑖𝑛(𝑛 − 1) + 𝑙𝑎𝑝𝑖𝑛(𝑛 − 2)

, 𝑠𝑖 𝑛 = 0
, 𝑠𝑖 𝑛 = 1
, 𝑠𝑖 𝑛 > 2

 

Écrire une fonction récursive Fibo qui prend comme argument un entier naturel n et qui renvoie le nombre lapin(n). 

1.  Tester votre fonction récursive en exécutant Fibo(10). Remarquez-vous quelque chose de particulier ? 
2.  Tester votre fonction récursive en exécutant Fibo(35). Remarquez-vous quelque chose de particulier ? 
3.  En terme de place mémoire, comparer l'augmentation nécessaire pour passer du calcul de Fibo(4) à celui de Fibo(5) 
4. En généralisant au passage de Fibo(n) à Fibo(n+1), déduire comment se comporte la compléxité en mémoire de cet 

algorithme. 

L’exécution de cet algorithme récursif conduit ici à répéter des calculs, ce qui le rend vite inutilisable tel quel. Comme c'est le cas 
avec de nombreux algorithmes récursifs, il existe une stratégie qui cherche à modifier un tel algorithme pour éliminer les calculs 
redondants : on l'appelle la programmation dynamique. Elle consiste à : 

1. Commencer par écrire un algorithme récursif pouvant faire des calculs redondants, 
2. Stocker, dans un tableau, les résultats intermédiaires. On modifie alors l'algorithme récursif pour qu'il lise le résultat dans 

ce tableau s'il a déjà été calculé mais pour qu'il calcule le résultat puis le stocke dans le tableau sinon. 
On gagne ainsi en complexité en temps, tout en perdant en complexité en mémoire. 

3. Ensuite, en analysant l'ordre des résultats appelés, il est même souvent possible d'écrire un algorithme itératif 
indépendant. 

VII.2. Récursivité croisée 

Pour l'instant, nous avons vu qu'une fonction peut s'appeler elle-même. Il est possible qu'une fonction appelle une deuxième 
fonction qui la rapelle en retour. 

Deux algorithmes sont dits mutuellement récursifs si l’un fait appel à l’autre et l’autre à l’un. On parle aussi de récursivité croisée. 

Cette définition peut être étendu à un plus grand nombre d'algorithmes. 

Voici l'exemple classique : on construit deux fonctions pair et impair qui renvoie un booléen déterminant la parité du nombre n 
entré en argument, fonctions qui s'appellent l'une, l'autre au cours de leur exécution. 
Voici le code en python de cette imbrication : 

def pair(n): 
    if n == 0: 
       return True 
    else: 
       return impair(n-1) 
 

def impair(n): 
    if n == 0: 
       return False 
    else: 
       return pair(n-1) 

1. Exécuter à la main pair(2) en cherchant à comprendre en quoi il y a une récursivité croisée. 
2. Visualiser la récursivité croisée en lançant étape par étape avec PythonTutorle programme ci-dessus en lançant la fonction 

pair(5). 


