La récursivité NSI - T'e
- 6 Langages et programmation COURS

/ Contenu : Récursivité.

YCE J .
e BRI DANCLAS Capacités attendues : Ecrire un programme récursif.

Analyser le fonctionnement d’'un programme récursif.

l. Exemple introductif

Certains problemes peuvent sembler difficile a résoudre d'emblée. Vous allez découvrir une maniere d'écrire des algorithmes qui
permet de résoudre élégamment certains probleémes. Voila un outil puissant !

L.1. Exemple1:

Soit une fonction puissance a créer, qui prend deux arguments x, un réel, et n, un entier naturel, et qui renvoie x".

Une méthode directe est de partir de 1 puis d'écrire une boucle répétitive qui permet d'aboutir par multiplications successives
a x"en utilisant le fait que x" = x - x"?

Voici une possibilité :

def (x: float, n: int) ->
p =1
for i in range (n):
p = X*p
return p

Tester le code précédent dans PythonTutor pour vérifier que la fonction puissance renvoie bien x".

Mais si on faisait l'inverse ? On part de ce qui est compliqué x" et on voit comment simplifier progressivement pour arrivera 1!
n 1 ,sin=0
x n—1 .
XX) sinon
Ainsi, on aurait l'idée d'écrire un programme comme celui ci-dessous :

Cela est possible, toujours en utilisant le fait que :

def (x : float, n : int) ->
if n ==
return 1
else
return x*puissance (x,n-1)

1. Réaliser une trace d'exécution de I'algorithme précédent avec x=2 et n=3. puissance(2,3) renvoie bien 2323 ?
2. Recopier le script précédent puis tester-le plusieurs fois, par exemple avec x=2 et n=10. Est-ce que puissance(2,10) renvoie
bien 210210.
Aussi étonnant que cela puisse paraitre de prime abord, cela fonctionne !
Nous avons ainsi créé une fonction puissance qui s'appelle elle-méme : on appelle cela la récursivité.

. Notion de récursivité

On qualifie de recursive toute fonction qui s'appelle elle-méme.

I.1. Exemple 2

Outre I'exemple précédent, voici un deuxieéme exemple.
Dans une grande boite de Pétri contenant un milieu nutritif riche sont déposées 10 bactéries.
On suppose que chaque heure le nombre de bactéries est multiplié par 4. Voici une fonction récursive nb_bact qui renvoie le
nombre de bactéries au bout de n jours, n étant un entier naturel saisi comme argument.
def (n : int) ->
if n ==
return 10
else
return 4*nb_bact (n-1)

Cette fonction permet d'évaluer le nombre de bactéries au bout d'une journée (en supposant le milieu nutritif suffisant) :

>>> nb_bact (24)
2814749767106560

1 | La récursivité

On peut y retrouver une suite : le nombre de bactéries au bout de n heures est donné par un.
Cette suite (un) est définie par la relation de récurrence suivante :
N { 10 ,sin=20
"4-U,—q, sin>0

Le nombre de bactéries obtenu au bout de 24 heures s'écrit dans le langage des suites comme égale a uaa.

Les premiers langages de programmation qui ont autorisé I'emploi de la récursivité sont LISP, développé a partir de 1958, et Algol 60
(2 partir de 1960). Depuis, tous les langages de programmation généraux réalisent une implémentation de la récursivité.

1.2. Exemple 3

Repérer parmi les fonctions suivantes celles qui sont récursives :

fonction f1 :
P
n—
fonction f2:
n ——
f2(n-1)
fonction f3:
n == g
f3(n-1)
fonction f4 :
n == :
n—

Voici une fonction mystéere nommée myst :

ma_liste == []

ma_liste.pop (9)
+myst (ma_liste)

1. Pourquoi cette fonction myst est une fonction récursive ?
2. Tester cette fonction avec quelques listes.
3. Quel est le role de cette fonction myst ?

2 | La récursivité

1ll. Condition d'arrét

I1.1. Exemple 4

Exécuter le code suivant :

def () -> :
print()
return mauvais_exemple ()

Evidemment, comme prévu, ce programme ne s'arréte pas, car la fonction mauvais_exemple() est appelée a l'infini. L'exécution
s'arréte d'elle-méme (au bout de 1000 récurences). Nous sommes (volontairement) tombés dans un piége qui sera
systématiquement présent lors d'une programmation récursive : le piege de la boucle infinie.

Mais attention : la récursivité ne DOIT PAS étre associée a une auto-référence vertigineuse : c'est en algorithmique une méthode
(parfois) trés efficace, a condition de respecter une regle cruciale : I'existence d'un CAS DE BASE.

Ce "cas de base" sera aussi appelé "condition d'arrét" ou encore "condition de terminaison", puisque la tres grande majorité des
algorithmes récursifs peuvent étre pergus comme des escaliers qu'on dévale a toute vitesse, en déséquilibre jusqu'au sol qui assure
notre arrét.

Lorsque nous allons programmer une fonction récursive, nous allons donc commencer par la fin, c'est-a-dire par le moment ou elle
renvoie effectivement un résultat. C'est le cas de base. Pour arriver progressivement vers la situation finale, chaque appel récursif se
fera en décrémentant un parametre : cela assurera l'arrét du programme.

[ll.2. Exemple 5
def (n):

if n == :
return ©

else
return n + mystere(n-1)

Observer :

¢ le cas de base (si n vaut 0 on renvoie vraiment une valeur, en 'occurence 0)
¢ |'appel récursif
¢ |a décrémentation du paramétre d'appel : mystere(n-1)
Cette fonction mystere(n) calcule la somme des entiers positifs inférieurs ou égaux a n.
S’il est assez aisé de dérouler I'exécution de la définition avec une boucle, comment représenter I'exécution de la fonction? On peut
remplacer I'appel de la fonction par le return qui sera obtenu, et continuer ainsi jusqu’a arriver au cas 0.
Voici I'arbre d’appel de somme(4) :
somme(4)
v
return4 + somme(3)

return3 + somme(2)

return2 + somme(1)

'
returnl + somme(0)
'
return0

Une fois arrivé a un cas de base, on remonte les valeurs obtenues au fur et a mesure.
Return 0

L
|Return 1+ somme(O)l
Vi
|Return 2+ somme(l)l
vs
|Return 3+ somme(2)|
&
[Return 4 + somme(3)|

+10

somme(4)

3 | La récursivité

La variable res de la version itérative correspond donc aux résultats successifs somme(0) =0

renvoyés par la version récursive. D’'une certaine maniére, la boucle calcule les somme(1l) =1 +somme(0) =1
résultats intermédiaires, en partant de 0. Cela revient a faire directement la somme(2) = 2+somme(1) =3
remontée des valeurs, comme c’est le cas dans I'exemple ci-contre. somme(3) = 3+somme(2) =6

somme(4) = 4+somme(3) = 10
Attention ! L'existence d’une condition d’arrét ne signifie pas que I'appel récursif s’arréte grace a celle-ci.
Prenons I'exemple de I'exécution de mystere(-1) :
e mystere(-1) conduit par appel récursif a I'exécution de mystere(-2)
mystere(-2) conduit par appel récursif a I'exécution de mystere(-3)
e mystere(-3) conduit par appel récursif a I'exécution de mystere(-4)

La condition d’arrét n=0 n’est jamais atteinte et on obtient une suite infinie d’appels.
Ainsi, il est important d'ajouter une précondition pour imposer que n soit un entier naturel. D'ou :

def (n) :
assert type(n) == int and n >=0,
if n ==
return 0
else
return n + mystere(n-1)

A retenir !

Dans une fonction récursive, il faut s’assurer que la condition d’arrét soit atteinte apres un nombre fini d’appels.

Cette condition d'arrét ne peut en aucun cas étre un appel récursif.

Souvent, il est pertinent de choisir une condition d'arrét correspondant a un "cas simple" pour lequel on connait la valeur a
renvoyer.

[ll.3. Exemple 6

Revoici la fonction puissance vue a la fin du paragraphe I. :

def (x : float, n : int) -> » .A
g La condition d'arrét est : n=0.
return 1 Cette condition correspond aussi au cas "simple" ol
else xo = 1: on connait le résultat a faire renvoyer par la

return x*puissance (x,n-1) fonction : 1.

[ll.4. Exemple 7
On veut réaliser un chateau de cartes géants qui prolonge le chateau de l'image ci-contre :

On note n le nombre d'étages du chateau et nb_cartes(n) le nombre de cartes nécessaires pour réaliser
un chateau a n étages.
On admet que l'on peut connaitre le nombre nb_cartes(n) de cartes nécessaires pour un chateau a n
étages si on connait déja le nombre nb_cartes(n-1) en utilisant la relation suivante (appelée relation de
récurrence en mathématiques) :

nb_cartes(n) = nb_cartes(n-1) + 2 + 3-(n-1)
On veut a partir de ces informations construire une fonction récursive nommeée nb_cartes qui renvoie
finalement le nombre nb_cartes(n) si on donne en argument le nombre n d'étages voulus au chateau.

Voici un script incomplet pour cette fonction :

def (n: int) ->
if: # condition d'arrét
return 0.
else: # cas général
return0 ...

1. Ens'aidant de la relation de récurrence liant nb_cartes(n) et nb_cartes(n-1), compléter le retour du cas général.
Déterminer quel cas simple correspond a la condition d'arrét puis compléter son renvoi.
3. Testez votre fonction obtenue.

g

Vous pouvez utiliser I'image ci-dessus pour connaitre quelques valeurs a obtenir.

4. Rajouter une précondition pour assurer le bon fonctionnement de I'algorithme.

4 | La récursivité

Dans |'exercice précédent, on est certain que la récursion prend fin car chaque nouvel appel se fait avec un parametre n qui
diminue.

Pour s'assurer de la terminaison d'un algorithme récursif, il suffit d'identifier une suite strictement décroissante d'entiers positifs ou
nul.

[Il.5. Exemple 8

La factorielle d'un entier naturel n non nul, notée n!, est le produit de tous les nombres entiers compris entre 1 et n, c'est-a-dire :

n!=1x2x...x(n—1)xn\

o 11=1
o Al=1x2x3x4=24
o 6!=1x2x3x4x5x6=720

Il existe une relation "simple" entre n! et (n-1)!
Eneffet:nl=1x2x..x(n-1)xn=1x2x..x(n-1)xn=(n-1)xn

(n-1)!

Ecrire une fonction récursive fact qui prend comme argument I'entier non nul n et qui renvoie n!

Quelle est la condition d'arrét de la fonction récursive ?

Comment étre certain que la situation de terminaison sera atteinte aprés un nombre fini d'appels récursifs ?
Rajouter une précondition.

— PP

IV. Pile d'exécution

lllustration sur I'exemple du paragraphe |

Nous avons vu plusieurs exemples de fonctions récursives. Le but est de comprendre au niveau de la gestion de la mémoire,
comment peut bien fonctionner la récursivité.

Reprenons I'exemple initial sur la fonction récursive puissancec :

def (x : float, n : int) ->
if n ==
return 1
else
return x*puissance (x,n-1)

Observer le déroulement de I'exécution de ce code étape par étape dans PythonTutor.

Il est possible de décrire ainsi la succession des étapes :

Appel a puissance_rec(2,4)
2*puissance_rec(2,3) =?
Appel a puissance_rec(2,3)
2*puissance_rec(2,2) =?
Appel a puissance_rec(2,2)
2*puissance_rec(2,1) =?
Appel a puissance_rec(2,1)
2*puissance_rec(2,0) =?
Appel a puissance_rec(2,0)
Retour de la valeur 1
2*1
Retour de la valeur 2
2%2
Retour de la valeur 4
2*4
Retour de la valeur 8
2*8
Retour de la valeur 16

On voit qu'il est nécessaire de mémoriser les parametres et les résultats a retourner : on parle de pile d'exécution.
Une pile d'exécution permet de mémoriser des informations sur les fonctions en cours d'exécution dans un programme.
Le principe est le suivant :

e ['instruction située en haut de la pile d'exécution est en cours d'exécution,

e lesinstructions en dessous sont mises en pause dans I'attente de se retrouver au sommet de la pile d'exécution.

5 | La récursivité

Voici une visualisation de ce qui se passe au niveau de la pile d'exécution lorsque I'on exécute le programme précédent :

Concrétement, ce qui est stocké a chaque étage de la pile, c'est I'adresse mémoire de l'instruction a exécuter. Pour simplifier, ici
c'est l'instruction qui est écrite.

puissance_rec(2,0),

puissance_rec(2,1 puissance_rec(2,1

La premiére instruction puissance(2,4) est lancée.

Comme celle-ci fait appel a puissance(2,3), puissance(2,3) est la nouvelle instruction exécutée tandis que puissance(2,4) est mise en
pause.

De méme, celle-ci faisant appel a puissance(2,2), puissance(2,2) est la nouvelle instruction exécutée tandis que puissance(2,3) est
mise en pause.

Ces appels successifs se reproduisent conduisant a un nouvel étage de la pile d'exécution jusqu'a ce que l'instruction a exécuter
devienne puissance(2,0) : il y a eu un empilement de 5 espaces-mémoire.

L'instruction puissance(2,0) renvoie 1 (et cl6t I'exécution de puissance(2,0)).

puissance_rec(2,1

puissance_rec(2,2

Comme l'instruction puissance(2,0) a été exécutée, elle est dépilée et l'instruction puissance(2,1), qui avait mise en attente, est
désormais exécuté avec la valeur renvoyée par puissance(2,0).

2x1=2

uissance_rec(2,2

L'instruction puissance(2,1) est désormais exécutée : elle renvoie la valeur 2 puis cette instruction est dépilée ; l'instruction suivante

puissance(2,2) est exécutée.

On poursuit I'exécution des instructions successives en dépilant progressivement la pile d'exécution. On obtient ainsi la visualisation
suivant du dépilement complet :

puissance_rec(2,1 2x1=2
puissance_rec(2,2) |puissance_rec(2,2 2x2=4
puissance_rec(2.3 puissance rec(2,3 puissance_rec(2,3 2x4=8

prisams] e ez

La pile d'exécution se ferme avec le renvoi de la valeur finale : 16.

6 | La récursivité

V. Limitations

Reprenons I'exemple initial sur la fonction récursive puissance vue au paragraphe I.
En exécutant le code suivant, vous verrez apparaitre un résultat :

>>> pulssance (2,965)

3118500483647999705713082364120060259480392594430402408597730066308143581045256352788996821082243
2829520975731940507738187069343568649900949049559348200490942500088639860713695586526897568171674
7289586991334988123957939133612635998263883635695006899610487641699336881506618514879741251551232

Quelle puissance !
Par contre, en exécutant le code suivant, vous verrez apparaitre, entre autres, un message d'erreur :

>>> pulssance_rec (2,966)
RecursionError: maximum recursion depth exceeded in comparison

Le langage Python génere et geére automatiquement les espaces-mémoires de la partie dédiée de la mémoire physique de
I'ordinateur : la pile d'exécution (ou pile de récursivité).

Comme tout systeme physique, sa capacité est limitée. Par défaut, I'implémentation de Pyhton limite la hauteur de la pile de
récursivité a 1000.

Si l'exécution d'un appel récursif conduit a vouloir dépasser cette hauteur maximale, alors le message d'erreur RuntimeError:
maximum recursion depth exceeded in comparison apparait.

V1. Que préférer entre un code impératif et un code récursif ?

Tout algorithme récursif peut étre transformé en un algorithme impératif.
La fonction récursive suivante qui permet de savoir si un caractére c est présent dans la chaine de caractéres ch :

def (c : str, ch : str) ->
if ch == :
return False # cas d'arrét négatif
elif ¢ == ch[0]
return True # cas d'arrét positif
else
return est_present(c,ch[1l:]) #un appel récursif qui est la derniére chose & effectuer

peut facilement étre réécrite en impératif :

def (c : str, ch : str) ->
bool = False
i=20
while bool == False and i < len(ch)
if ¢ == ch[i]
bool = True
i=1i+1

return bool

Comme tout algorithme récursif peut étre transformé en un algorithme impératif, qu'est-il préférable d'écrire ?
Quelques avantages de la récursivité :

e Larécursivité ajoute de la simplicité (de la compacité) lors de I'écriture de code, ce qui facilite le débogage,

e Lla récursivité est également préférée lors de la résolution de problemes trés complexes : une solution récursive décrit
comment calculer la solution a partir d’'un cas plus simple, au lieu de préciser chaque action a réaliser, on décrit ce qu’on
veut obtenir, c’est ensuite au systeme de réaliser les actions nécessaires pour obtenir le résultat demandé.

La récursivité a ses propres limites :

e Lesfonctions récursives requiérent généralement plus d’espace de mémoire.

e Les récursions peuvent excéder la taille de la pile de récursivité : il y a alors un débordement de pile

e Une fonction récursive peut étre de plus grande compacité dans son écriture mais n'est pas forcément de plus
petite complexité (en temps d'exécution ou en espace mémoire nécessaire).

Conclusion :
e sion recherche I'efficacité (une exécution rapide) et si le programme peut étre écrit sans trop de difficultés en itératif, on
préférera l'itératif.
e on préfére la récursivité surtout dans les situations ou la solution itérative est difficile a obtenir, par exemple :
o siles structures de données manipulées sont récursives (ex les arbres).
o sileraisonnement lui-méme est récursif. (ex le jeu des tours de Hanoi, voir TD)

7 | La récursivité

VIl. Récursivité multiple et croisée

VIL.1. Récursivité multiple

Un algorithme récursif est dit multiple si 'un des cas qu’il distingue se résout avec plusieurs appels récursifs.

Considérons la suite dite de Fibonacci.

Fibonacci a publié en 1202 un recueil de problemes pratiques, le Liber abaci. Le but était d'exposer les applications pour le
commerce de l'utilisation des chiffres arabes et des algorithmes arithmétiques permettant de calculer avec ces chiffres arabes. Ce
livre a conduit a l'utilisation des chiffres arabes en Occident plutot que des chiffres romains.

Le probleme le plus célebre du Liber abaci est le suivant : Combien de couples de lapins aurons-nous a la fin de I'année si nous
commengons avec un couple qui engendre chaque mois un autre couple qui procréé a son tour au bout de deux mois ? Cet énoncé
sous-entend les conditions suivantes :

1. La maturité sexuelle du lapin est atteinte aprés un mois qui est aussi la durée de gestation.

2. Chaque portée comporte toujours un male et une femelle.

3. Les lapins ne meurent pas !!

Si on note lapin(n) le nombre de lapins au bout de n mois, on peut modéliser le probléme "pratique" par une suite (lapin(n)). Cette
suite (lapin(n)) est définie par la relation de récurrence suivante :

1 ,sin=0
lapin(n) = {1 ,sin=1
lapin(n — 1) + lapin(n — 2),sin > 2

Ecrire une fonction récursive Fibo qui prend comme argument un entier naturel n et qui renvoie le nombre lapin(n).

1. Tester votre fonction récursive en exécutant Fibo(10). Remarquez-vous quelque chose de particulier ?

2. Tester votre fonction récursive en exécutant Fibo(35). Remarquez-vous quelque chose de particulier ?

3. Enterme de place mémoire, comparer I'augmentation nécessaire pour passer du calcul de Fibo(4) a celui de Fibo(5)

4. En généralisant au passage de Fibo(n) a Fibo(n+1), déduire comment se comporte la compléxité en mémoire de cet
algorithme.

L’exécution de cet algorithme récursif conduit ici a répéter des calculs, ce qui le rend vite inutilisable tel quel. Comme c'est le cas
avec de nombreux algorithmes récursifs, il existe une stratégie qui cherche a modifier un tel algorithme pour éliminer les calculs
redondants : on |'appelle la programmation dynamique. Elle consiste a :

1. Commencer par écrire un algorithme récursif pouvant faire des calculs redondants,

2. Stocker, dans un tableau, les résultats intermédiaires. On modifie alors I'algorithme récursif pour qu'il lise le résultat dans
ce tableau s'il a déja été calculé mais pour qu'il calcule le résultat puis le stocke dans le tableau sinon.
On gagne ainsi en complexité en temps, tout en perdant en complexité en mémoire.

3. Ensuite, en analysant l'ordre des résultats appelés, il est méme souvent possible d'écrire un algorithme itératif
indépendant.

VII.2. Récursivité croisée
Pour l'instant, nous avons vu qu'une fonction peut s'appeler elle-méme. Il est possible qu'une fonction appelle une deuxieme
fonction qui la rapelle en retour.
Deux algorithmes sont dits mutuellement récursifs si I'un fait appel a I'autre et I'autre a I'un. On parle aussi de récursivité croisée.

Cette définition peut étre étendu a un plus grand nombre d'algorithmes.

Voici I'exemple classique : on construit deux fonctions pair et impair qui renvoie un booléen déterminant la parité du nombre n
entré en argument, fonctions qui s'appellent lI'une, I'autre au cours de leur exécution.
Voici le code en python de cette imbrication :

impair(n-1)

pair(n-1)
1. Exécuter a la main pair(2) en cherchant a comprendre en quoi il y a une récursivité croisée.
2. Visualiser la récursivité croisée en langant étape par étape avec PythonTutorle programme ci-dessus en lancant la fonction

pair(5).

8 | La récursivité

