

1 La récursivité - Devoir

Récursivité

NSI - Tle

DEVOIR
SURVEILLÉ

Contenu : - Récursivité.

Capacités attendues : - Écrire un programme récursif.
 - Analyser le fonctionnement d’un programme récursif.

Nom prénom :

1. Fonction mystère1

On définît en python la fonction ci-dessous :

def mystere1(a,b) :
 if b == 1 :
 return(a)
 else :
 return a*mystere1(a, b-1)

print(mystere1(5,4))

Cette fonction prend comme argument a et b, deux entiers naturels non nuls.

a. Que retourne mystere1(5,4) ? Justifier par un calcul.

mystere1(5,4)=625 ; en effet :
mystere1(5,4) a besoins de mystere1(5,3)
mystere1(5,3) a besoins de mystere1(5,2)
mystere1(5,2) a besoins de mystere1(5,1)
mystere1(5,1)=5
On peut donc calculer mystere1(5,2)=5* mystere1(5,1)=25
On peut donc calculer mystere1(5,3)=5* mystere1(5,2)=125
On peut donc calculer mystere1(5,4)=5* mystere1(5,3)=625

b. Indiquer où se situe l’appel récursif.

axmystere1(a,b-1)

c. Comment s’appelle le if b==1 ?

Condition d’arrêt

d. Qu’est-ce qui garantit que le programme finira par s’arrêter ?

Car b diminue à chaque appel récursif

e. À quoi correspond mystere1(a,b) ?

ab

2. Fonction mystère2

On rappelle qu'un nombre entier compris entre 0 et 127 peut être codé sur 8 bits. Voici une fonction mystère

nommée mystere2 qui prend en argument une liste d'entiers naturels compris entre 0 et 127 :

def mystere2(l: list) :
 if l == [] :
 return 0
 else :
 l.pop(0) # on supprime le premier élément de la liste l
 return 8 + mystere2(l)

2 La récursivité - Devoir

a. Pourquoi cette fonction mystere2 est une fonction récursive ?

Grâce :

1. Au point d'arrêt (lorsque la liste est vide, on retourne 0)

2. À l'appel 8 + mystere2(liste)

b. Quel sera le résultat de cette fonction avec les listes suivantes : [3], [127], [3,7], [3,100,75,7,0].

[3] : 8

[127] : 8

[3,7] : 16

[3,100,75,7,0] : 40

c. Quel est le rôle de cette fonction mystere2 ?

Donner le nombre de bits nécessaires pour coder en binaire tous les nombres de la liste

3. Fonction somme

Écrire une fonction récursive somme qui prend comme argument un entier non nul n et qui renvoie la somme de tous les
nombres entiers compris entre 1 et n.

def somme (n) :

 if n == 1 :

 return 1

 return n + somme(n-1)

4. Affichage des entiers de 1 à n dans l’ordre décroissant

Écrire une fonction récursive descente(n) affichant les entiers de 1 à n dans l’ordre décroissant.

def descente(n) :
 if n == 0 :
 return
 else :
 print(n)
 return descente(n-1)

3 La récursivité - Devoir

5. Mélange des éléments d’une liste

On s’intéresse dans cet exercice à un algorithme de mélange des éléments d’une liste.

1. Pour la suite, il sera utile de disposer d'une fonction echange qui permet d'échanger dans une liste lst les

éléments d'indice i1 et i2.

Expliquer pourquoi le code Python ci-dessous ne réalise pas cet échange et en proposer une modification.

def echange(lst, i1, i2):
lst[i2] = lst[i1]
lst[i1] = lst[i2]

Cela fait l'égalité entre lst[i1] et lst[i2]

def echange(lst, i1, i2) :

 lst[i1], lst[i2] = lst[i2], lst[i1]

 return lst

print(echange([1,5,6,8], 1, 0))

2. La documentation du module random de Python fournit les informations ci-dessous concernant la fonction

randint(a,b) :
Renvoie un entier aléatoire N tel que a <= N <= b. Alias pour randrange(a, b+1).

Parmi les valeurs ci-dessous, quelles sont celles qui peuvent être renvoyées par l'appel randint(0, 10) ?

0 1 3.5 9 10 11

0 1 9 10

3. Le mélange de Fischer Yates est un algorithme permettant de permuter aléatoirement les éléments d'une liste. On
donne ci-dessous une mise en œuvre récursive de cet algorithme en Python.

from random import randint

def melange(lst, ind):
 print(lst)
 if ind > 0 :
 j = randint(0, ind)
 echange(lst, ind, j)
 melange(lst, ind-1)

a. Expliquer pourquoi la fonction melange se termine toujours.

Car la fonction est appelée avec index-1 et se rappellera si index<0.

Elle s'arrêtera donc quand index sera égal à 0

b. Lors de l’appel de la fonction melange, la valeur du paramètre ind doit être égal au plus grand indice possible

de la liste lst.

Pour une liste de longueur n, quel est le nombre d'appels récursifs de la fonction melange effectués, sans compter

l’appel initial ?

4 La récursivité - Devoir

Le nombre d'appels récursifs de la fonction melange effectués, sans compter l’appel initial sera de n-1

c. On considère le script ci-dessous :

lst = [v for v in range(5)]

melange(lst, 4)

On suppose que les valeurs successivement renvoyées par la fonction randint sont 2, 1, 2 et 0.

Les deux premiers affichages produits par l'instruction print(lst) de la fonction melange sont :

[0, 1, 2, 3, 4]

[0, 1, 4, 3, 2]

Donner les affichages suivants produits par la fonction melange.

[0, 1, 2, 3, 4]
[0, 1, 4, 3, 2]
Puis :
[0, 3, 4, 1, 2]
[0, 3, 4, 1, 2]
[3, 0, 4, 1, 2]

d. Proposer une version itérative du mélange de Fischer Yates.

def melange_iteration(lst, ind) :

 while ind > 0 :

 print(lst)

 j = randint(0, ind)

 echange(lst, ind, j)

 ind -= 1

 return lst

Barrême :
1a 1
1b 0,5
1c 0,5
1d 0,5
1e 1

2a 1
2b 2
2c 0,5

3 3

4 3

5-1 2
5-2 1
5-3a 0,5
5-3b 0,5
5-3c 1
5-3d 2

