

1 TD Programmation Orientée Objet

 La Programmation Orientée Objet

Structures de données
NSI - Tle

TD

Contenu : Vocabulaire de la programmation objet : classes, attributs, méthodes, objets.

Capacités attendues : Écrire la définition d’une classe.
Accéder aux attributs et méthodes d’une classe.

Exercice 1

Pour la création d’une classe voiture, donne alors un exemple d’attribut et de méthode dans cette classe.

Établir le diagramme de classes

Exercice 2

Créer une classe carte de crédit qui a un solde initial, un débit maximum. On pourra créditer, débiter, visualiser le solde.

Exercice 3 : utilisation d’objet

On suppose écrite la classe Carte (jeu de cartes) dont on vous donne les en-têtes de méthodes ci-après. Cette classe diffère légèrement

de la classe Carte vue dans le cours, prenez le temps d’analyser ce code et de voir les différences :

class Carte:

def __init__(self, nom, couleur):

Affectation de l'attribut nom et de l'attribut couleur

couleur = ('CARREAU', 'COEUR', 'TREFLE', 'PIQUE')

noms = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'Valet', 'Dame', 'Roi', 'As']

valeurs = {'2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '10': 10, 'Valet': 11,

'Dame': 12, 'Roi': 13, 'As': 14}

def setNom(self, nom):

Mutateur de l'attribut nom (de la liste noms)

def getNom(self):

renvoie le nom de la carte (de la liste noms): Accesseur

def getCouleur(self):

renvoie la couleur de la carte (de la liste couleur): Accesseur

def getValeur(self):

renvoie la valeur de la carte (du dictionnaire valeurs) : Accesseur

def egalite(self, carte):

''' Renvoie True si les cartes self et carte ont même valeur, False sinon carte: Objet de type Carte

'''

def estSuperieureA(self, carte):

''' Renvoie True si la valeur de self est supérieure à celle de carte, False sinon carte : Objet de

type Carte '''

def estInferieureA(self, carte):

''' Renvoie True si la valeur de self est inférieure à celle de carte, False sinon carte : Objet de

type Carte '''

http://www.prog-spip.com/IMG/jpg/POO.jpg

2 TD Programmation Orientée Objet

Écrire (sur feuille) un programme principal qui va :

1. Créer la carte Valet de COEUR que l’on nommera c1.

2. Afficher le nom, la valeur et la couleur de c1.

3. Créer la carte As de PIQUE que l’on nommera c2.

4. Afficher le nom, la valeur et la couleur de c2.

5. Modifier le nom de la carte c2 en Roi et afficher le nom, la valeur et la couleur de c2.

6. Créer la carte 8 de TREFLE que l’on nommera c3.

7. Comparer les cartes c1 et c2 puis c1 et c3.

Saisir et tester votre programme

Exercice 4 : utilisation d’objet

On suppose écrites les classes Piece et Appartement, dont on vous donne les en-têtes de méthodes :

Dans l'éditeur PYTHON

class Piece:

nom est une string et surface est un float

def __init__(self,nom,surface):

...

...

Accesseurs: retournent les attributs d'un objet de cette classe

def getSurface(self):

...

def getNom(self):

...

Mutateur

def setSurface(self,s): # s est un float,

...

class Appartement: # nom est une string

def __init__(self,nom):

L'objet est une liste de pièces (objets issus de la classe Piece)

...

...

def getNom(self):

Accesseurs:

...

def ajouter(self,piece):

pour ajouter une pièce de classe Piece

...

def nbPieces(self): #

pour avoir le nombre de pièces de l'appartement

...

retourne la surface totale de l'appartement (un float)

def SurfaceTotale(self):

...

retourne la liste des pièces avec les surfaces sous forme d'une liste de tuples

def getListePieces(self):

...

Écrire (sur feuille) un programme principal utilisant ces deux classes qui va :

1. Créer une pièce "chambre1", de surface 20 m2 et une pièce "chambre2", de surface 15 m2

2. Créer une pièce "séjour", de surface 25 m2 et une pièce "sdb", de surface 10 m2

3. Créer une pièce "cuisine", de surface 12 m2

4. Créer un appartement "appart205" qui contiendra toutes les pièces créées

5. Afficher la surface totale de l’appartement créé

6. Afficher la liste des pièces et surfaces de l’appartement créé

3 TD Programmation Orientée Objet

Exercice 5 : rédaction des méthodes

On repose sur les mêmes classes que dans l’exercice 4 : Piece et Appartement. Les en-têtes de méthodes sont les mêmes mais vous

allez devoir les compléter (...) :

class Piece:

nom est une string et surface est un float

def __init__(self,nom,surface):

chaque objet a pour attributs le nom de la pièce(string) # et la surface de celle

ci(float) en m2.
on doit rentrer le couple nom de la pièce et la surface # pour chaque pièce.
...

Accesseurs: retournent les attributs d'un objet de cette classe

def getNom(self):

...

def getSurface(self):

...
Mutateur: modifient les attributs, ici la surface d'une pièce déjà renseignée

def setSurface(self,s): # s est un float ...

class Appartement:

def __init__(self,nom): # nom est une string

#nomme l'appartement et une liste de pièces vide à remplir ...

def ajouter(self,piece):

ajoute une pièce (instance(=objet) de la classe Piece)

def nbPieces(self):

retourne le nombre de pièces de l'appartement ...

def getSurfaceTotale(self):

retourne la surface totale de l'appartement (un float)

...

def getListePieces(self): # retourne la liste des pièces

...

Consignes :

1. Écrire les méthodes constructeurs des deux classes.

En cas de difficulté, rendez-vous à la version intermédiaire. (Différenciation)

2. Finaliser la classe Piece.

Écrire les méthodes accesseurs et mutateurs de la classe Piece.

3. Finaliser la classe Appartement.

(a) Écrire la méthode qui permet d’ajouter une pièce(ajouter(self,piece)) de la liste de pièces présentes dans l’appartement.

(Rappel utile a)

(b) Écrire la méthode qui permet de retourner le nombre de pièces(nbPieces(self)) présentes dans l’appartement. (Rappel

utile b)

(c) Écrire la méthode getSurfaceTotale(self), qui renvoie la surface totale de l’appartement. (Rappel utile b) (d) Écrire la

méthode getListePieces(self), qui renvoie la liste des pièces de l’appartement.

(d) Créer un tableau qui classe les méthodes de ces deux classes selon leur type : constructeur, accesseur, mutateur ou autre.

Aide

Rappels utiles :

• pour ajouter un élément à la fin d’une liste : nomDeListe.append(élément);

• la longueur d’une liste l s’obtient avec len(l).

4 TD Programmation Orientée Objet

Le test sera le suivant :

a = Appartement('appt205')

p1 = Piece("chambre", 11.1)

p2 = Piece("sdbToilettes", 7)

p3 = Piece("cuisine", 7)

p4 = Piece("salon", 21.3)

print(p4.getNom(),p4.getSurface())

p1.setSurface(12.6)

a.ajouter(p1)
a.ajouter(p2)
a.ajouter(p3)
a.ajouter(p4)

print(a.getNom(),a.getListePieces())

print('nb pieces =', a.nbPieces(),', Surface totale =',a.SurfaceTotale())

Et devra retourner :

Dans la console PYTHON

salon 21.3

appt205 [('chambre', 12.6), ('sdbToilettes', 7), ('cuisine', 7),

('salon', 21.3)] nb pieces = 4 , Surface totale = 47.9

