La Programmation Orientée Objet NSI - T'e

56 Structures de données ™
///,4—’————7 Contenu : Vocabulaire de la programmation objet : classes, attributs, méthodes, objets.
LYCEE BOISSY D'ANGLAS Capacités attendues : Ecrire la définition d’une classe.

Accéder aux attributs et méthodes d’une classe.

Exercice 1

Pour la création d’une classe voiture, donne alors un exemple d’attribut et de méthode dans cette classe.

Méthodes
Créations
d'objets
ayant Classe
mutesvles représentant
caractéristiques I'objet

de la
classe

Variables

Etablir le diagramme de classes

Créer une classe carte de crédit qui a un solde initial, un débit maximum. On pourra créditer, débiter, visualiser le solde.

Exercice 3 : utilisation d’objet

On suppose écrite la classe Carte (jeu de cartes) dont on vous donne les en-tétes de méthodes ci-apres. Cette classe différe légérement
de la classe Carte vue dans le cours, prenez le temps d’analyser ce code et de voir les différences :

class Carte:

def init (self, nom, couleur):
Affectation de 1'attribut nom et de 1'attribut couleur
couleur = ('CARREAU', 'COEUR', 'TREFLE', 'PIQUE')
noms = ['2', '3', '4', '5', 'e', '7', '8', '9', '10', 'Valet', 'Dame', 'Roi', 'As']

valeurs = {('2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '10': 10, 'Valet': 11,
'Dame': 12, 'Roi': 13, 'As': 14}

def setNom(self, nom):
Mutateur de 1'attribut nom (de la liste noms)

def getNom(self):
renvoie le nom de la carte (de la liste noms): Accesseur

def getCouleur (self):
renvoie la couleur de la carte (de la liste couleur): Accesseur

def getValeur (self):
renvoie la valeur de la carte (du dictionnaire valeurs) : Accesseur

def egalite(self, carte):
""" Renvoie True si les cartes self et carte ont méme valeur, False sinon carte: Objet de type Carte

def estSuperieureA (self, carte):
""!" Renvoie True si la valeur de self est supérieure a celle de carte, False sinon carte : Objet de
type Carte '''

def estInferieureA(self, carte):
'"!" Renvoie True si la valeur de self est inférieure a celle de carte, False sinon carte : Objet de
type Carte '''

1 | TD Programmation Orientée Objet

http://www.prog-spip.com/IMG/jpg/POO.jpg

Ecrire (sur feuille) un programme principal qui va :

1. Créer la carte Valet de COEUR que I'on nommera c1.
Afficher le nom, la valeur et la couleur de c1.
Créer la carte As de PIQUE que I'on nommera c2.
Afficher le nom, la valeur et la couleur de c2.

Modifier le nom de la carte c2 en Roi et afficher le nom, la valeur et la couleur de c2.

I

Créer la carte 8 de TREFLE que I'on nommera c3.
7. Comparer les cartes cl et c2 puis cl et c3.

Saisir et tester votre programme

Exercice 4 : utilisation d’objet

On suppose écrites les classes Piece et Appartement, dont on vous donne les en-tétes de méthodes :

Dans 1'éditeur PYTHON

class Piece:
nom est une string et surface est un float
def init (self,nom,surface):

Accesseurs: retournent les attributs d'un objet de cette classe

def getSurface(self):
def getNom(self):

Mutateur
def setSurface(self,s): # s est un float,

class Appartement: # nom est une string
def init_ (self,nom):

L'objet est une liste de piéces (objets issus de la classe Piece)

def getNom(self) :
Accesseurs:

def ajouter(self,piece):
pour ajouter une piéce de classe Piece

def nbPieces(self): #
pour avoir le nombre de pieces de 1'appartement

retourne la surface totale de 1'appartement (un float)
def SurfaceTotale(self):

retourne la liste des pieces avec les surfaces sous forme d'une liste de tuples
def getListePieces (self):

Ecrire (sur feuille) un programme principal utilisant ces deux classes quiva :
1. Créer une piéce "chambrel", de surface 20 m? et une piéce "chambre2", de surface 15 m?
2. Créer une piéce "séjour", de surface 25 m? et une piéce "sdb", de surface 10 m?
3. Créer une piéce "cuisine", de surface 12 m?

Créer un appartement "appart205" qui contiendra toutes les piéces créées

Afficher la surface totale de I'appartement créé

o v &

Afficher la liste des piéces et surfaces de I'appartement créé

2 | TD Programmation Orientée Objet

Exercice 5 : rédaction des méthodes

On repose sur les mémes classes que dans I'exercice 4 : Piece et Appartement. Les en-tétes de méthodes sont les mémes mais vous
allez devoir les compléter (...) :

class Piece:
nom est une string et surface est un float
def init (self,nom,surface):
chaque objet a pour attributs le nom de la piéece(string) # et la surface de celle
ci(float) en m2.
on doit rentrer le couple nom de la piece et la surface # pour chaque piece.

Accesseurs: retournent les attributs d'un objet de cette classe
def getNom(self):

def getSurface(self):

Mutateur: modifient les attributs, ici la surface d'une piéece déja renseignée
def setSurface(self,s): # s est un float

class Appartement:
def init (self,nom): # nom est une string
#nomme 1'appartement et une liste de pieces vide a remplir ...
def ajouter(self,piece):
ajoute une piece (instance (=objet) de la classe Piece)

def nbPieces(self):

retourne le nombre de pieces de 1'appartement

def getSurfaceTotale (self):

retourne la surface totale de 1'appartement (un float)

def getlistePieces(self): # retourne la liste des pieces

Consignes :
1. Ecrire les méthodes constructeurs des deux classes.
En cas de difficulté, rendez-vous a la version intermédiaire. (Différenciation)
2. Finaliser la classe Piece.
Ecrire les méthodes accesseurs et mutateurs de la classe Piece.
3. Finaliser la classe Appartement.

(a) Ecrire la méthode qui permet d’ajouter une piéce(ajouter(self,piece)) de la liste de piéces présentes dans I'appartement.
(Rappel utile a)

(b) Ecrire la méthode qui permet de retourner le nombre de piéces(nbPieces(self)) présentes dans I'appartement. (Rappel
utile b)

(c) Ecrire la méthode getSurfaceTotale(self), qui renvoie la surface totale de I'appartement. (Rappel utile b) (d) Ecrire la
méthode getListePieces(self), qui renvoie la liste des piéces de I'appartement.
(d) Créer un tableau qui classe les méthodes de ces deux classes selon leur type : constructeur, accesseur, mutateur ou autre.

\@’— Aide

Rappels utiles :

e pour ajouter un élément a la fin d’une liste : nomDeliste.append(élément);
e lalongueur d’une liste ¢ s’obtient avec len(¢).

3 | TD Programmation Orientée Objet

Le test sera le suivant :

a = Appartement ('appt205")

pl Piece ("chambre", 11.1)
p2 = Piece("sdbToilettes", 7)
p3 = Piece("cuisine", 7)

p4 = Piece("salon", 21.3)

print (p4.getNom() ,p4.getSurface())

pl.setSurface(12.6)

a.ajouter (pl)

a.ajouter (p2)

a.ajouter (p3)

a.ajouter (p4)

print(a.getNom (), a.getListePieces())

print('nb pieces =', a.nbPieces(),', Surface totale =',a.SurfaceTotale())

Et devra retourner :

4 | TD Programmation Orientée Objet

