

1 La POO

La Programmation Orientée Objet

Structures de données

NSI - Tle

COURS

Contenu : Vocabulaire de la programmation objet : classes, attributs, méthodes, objets.

Capacités attendues : Écrire la définition d’une classe.

Accéder aux attributs et méthodes d’une classe.

I. Introduction : Programmation procédurale, programmation orientée objet

I.1. La notion d’objet et de classe

▪ Jusqu’ici, les programmes ont été réalisés en programmation procédurales, c’est à dire que chaque programme a été décomposé
en plusieurs fonctions réalisant des tâches simples.

Cependant lorsque plusieurs programmeurs travaillent simultanément sur un projet, il est nécessaire de programmer autrement
afin d’éviter les conflits entre les fonctions.

▪ Un objet se caractérise par 3 choses :

• son état

• son comportement

• son identité

L’état est défini par les valeurs des attributs de l’objet à un instant t.

Par exemple, pour un téléphone, certains attributs sont variables dans le temps comme allumé ou éteint, d’autres sont invariants

comme le modèle de téléphone.

Le comportement est défini par les méthodes de l’objet : en résumé, les méthodes définissent à quoi sert l’objet et/ou permettent
de modifier son état.

L’identité est définie à la déclaration de l’objet (instanciation) par le nom choisi, tout simplement.

▪ En programmation orientée objet, on fabrique de nouveau types de données correspondant aux besoins du programme. On
réfléchit alors aux caractéristiques des objets qui seront de ce type et aux actions possibles à partir de ces objets.

Ces caractéristiques et ces actions sont regroupées dans un code spécifique associé au type de données, appelé classe.

I.2. Classe : un premier exemple avec le type list

Le type de données list est une classe.

ma_liste = [5,7,3]

type(ma_liste)

>>>list

Une action possible sur les objets de type liste est le tri de celle-ci avec la méthode nommée sort(). On parle alors de méthode et la
syntaxe est :

comme avec la méthode de tri liste.sort()

ma_liste = [5,7,3]

ma_liste.sort()

print(ma_liste)

 >>>[3,5,7]

I.3. Classe : vocabulaire

• Le type de données avec ses caractéristiques et ses actions possibles s’appelle classe.

• Les caractéristiques (ou variables) de la classe s’appellent les attributs.

• Les actions possibles à effectuer avec la classe s’appellent les méthodes.

• La classe définit donc les attributs et les actions possibles sur ces attributs, les méthodes.

• Un objet du type de la classe s’appelle une instance de la classe et la création d’un objet d’une classe s’appelle une
instanciation de cette classe.

• Lorsqu’on définit les attributs d’un objet de la classe, on parle d’instanciation.

• On dit que les attributs et les méthodes sont encapsulés dans la classe.

nom_objet . nom_méthode()

ma_liste est une liste, ou plus précisément un objet de type list . Et en tant qu'objet de

type list , il est possible de lui appliquer certaines fonctions prédéfinies (qu'on appellera

méthodes) : ma_liste.sort()

La syntaxe utilisée (le . après le nom de l'objet) est spécifique à la POO. Chaque fois que vous
voyez cela, c'est que vous êtes en train de manipuler des objets.

2 La POO

On peut afficher les méthodes associées à un objet avec la fonction dir(objet) :

dir(ma_liste)

 >>>['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__',

'__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__',

'__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',

'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__',

'__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index',

'insert', 'pop', 'remove', 'reverse', 'sort']

On retrouve les méthodes connues concernant les listes : sort(), count(), append(), pop() ... Les autres méthodes encadrées par les
underscores (_) sont spéciales. Ce sont des méthodes privées, a priori non destinées à l'utilisateur. Les méthodes publiques, utilisables
pour chaque objet de type list, sont donc append, clear, jusqu’à sort...

Comment savoir ce que font les méthodes ? Si elles ont été correctement codées (et elles l'ont été), elles possèdent une _docstring_,
accessible par :

ma_liste.append.__doc__

 >>>'Append object to the end of the list.'

m.reverse.__doc__

 >>>'Reverse *IN PLACE*.'

I.4. Un peu d’histoire

La programmation orientée objet, qui fait ses débuts dans les années 1960 avec les réalisations dans le langage Lisp, a été
formellement définie avec les langages Simula (vers 1970) puis SmallTalk.

Puis elle s’est développée dans les langages anciens comme le Fortran, le Cobol et est même incontournable dans des langages récents
comme Java ou C++.

II. Création d’une classe : pas à pas

II.1. Un constructeur

▪ On va créer une classe simple, la classe Carte correspondant à une carte d’un jeu de 32 ou 52 cartes.

Par convention, une classe s’écrit toujours avec une majuscule.

class Carte :

'''Une carte d'un jeu de 32 ou 52 cartes '''

▪ Une méthode constructeur commence toujours par :
def __init__(self,...):

Le paramètre particulier self est expliqué en fin de chapitre II.1. Avec deux tirets bas ou underscores de part et d’autre de init.

▪ On va définir les attributs de la carte qui seront :

• sa valeur 2,3··· ,10,11 pour Valet,12 pour Dame,13 pour Roi et 14 pour As

• sa couleur (Carreau, Coeur, Trèfle, Pique).

class Carte : # Définition de la classe

'''Une carte d'un jeu de 32 ou 52 cartes '''

def __init__(self,valeur,couleur): # méthode 1 : constructeur

 self.valeur = valeur # 1er attribut valeur {de 2 à 14 pour as}

 self.couleur = couleur # 2e attribut {'pique','carreau','coeur','trefle'}

▪ Création d’une instance de la classe Carte :

>>> carte1 = Carte(5,'carreau')

Lorsque l’on créé un objet, son constructeur est appelé implicitement et l’ordinateur alloue de la mémoire pour l’objet et ses
attributs. On peut d’ailleurs obtenir l’adresse mémoire de notre objet créé x.

3 La POO

>>> carte1 = Carte(5,'carreau')

>>> carte1

<__main__.Carte object at 0x7f7f57d4ae90>

▪ Par ailleurs, l’obtention de la valeur d’un attribut d’un objet se fait par l’utilisation de l’opérateur d’accessibilité point :

Cela peut se lire ainsi de droite à gauche nom_attribut appartenant à l’instance nom_objet

>>>carte1 = Carte(5,'carreau')

>>>carte1.valeur

5

>>> carte1.couleur

'carreau'

▪ La variable self.

La variable self, dans les méthodes d’un objet, désigne l’objet auquel s’appliquera la méthode.

Elle représente l’objet dans la méthode en attendant qu’il soit créé.

class Carte : # Définition de la classe

 '''Une carte d'un jeu de 32 ou 52 cartes '''
 def __init__(self,valeur,couleur): # constructeur

 self.valeur = valeur # 1er attribut

 self.couleur = couleur # 2e attribut

>>> carte1 = Carte(5,'carreau')

>>> carte2 = Carte(14,'pique')

Dans cet exemple, la méthode __init__ (constructeur) est appelée implicitement. "self" fait référence à l’objet carte1 dans la
première ligne et à l’objet carte2 dans la seconde.

II.2. Encapsulation : les accesseurs ou "getters"

On ne va généralement pas utiliser la méthode précédente nom_objet.nom_attribut permettant d’accéder aux valeurs des attributs
car on ne veut pas forcement que l’utilisateur ait accès à la représentation interne des classes. Pour utiliser ou modifier les attributs,
on utilisera de préférence des méthodes dédiées dont le rôle est de faire l’interface entre l’utilisateur de l’objet et la représentation
interne de l’objet (ses attributs).

Les attributs sont alors en quelque sorte encapsulés dans l’objet, c’est à dire non accessibles directement par le programmeur qui a
instancié un objet de cette classe.

Encapsulation

▪ L’encapsulation désigne le principe de regrouper des données brutes avec un ensemble de routines (méthodes)
permettant de les lire ou de les manipuler.

▪ But de l’encapsulation : cacher la représentation interne des classes.

• pour simplifier la vie du programmeur qui les utilise;

• pour masquer leur complexité (diviser pour régner);

• pour permettre de modifier celle-ci sans changer le reste du programme.

• la liste des méthodes devient une sorte de mode d’emploi de la classe.

Pour obtenir la valeur d’un attribut nous utiliserons la méthode des accesseurs (ou "getters") dont le nom est généralement :

getNom_attribut() . Par exemple ici :

class Carte : # Définition de la classe

 '''Une carte d'un jeu de 32 ou 52 cartes '''

 def __init__(self,valeur,couleur): # méthode 1 : constructeur

 self.valeur=valeur # 1er attribut valeur {de 2 à 14 pour as}

 self.couleur=couleur # 2e attribut {'pique','carreau','coeur','trefle'}

 def getAttributs(self): # méthode 2 : permet d'accéder aux valeurs des attributs

 return (self.valeur, self.couleur)

nom_objet.nom_attribut

4 La POO

>>> carte1 = Carte(5,'carreau')

>>> carte2 = Carte(14,'pique')

>>> carte1.getAttributs()

(5,'carreau')

>>> carte2.getAttributs()

(14,'pique')

II.3. Exercice 1.

Créer deux autres méthodes permettant de récupérer la valeur de la carte et la couleur avec les "getters" (accesseurs) : getCouleur()
et getValeur()

II.4. Modifications contrôlées des valeurs des attributs : les mutateurs ou "setters"

On va devoir contrôler les valeurs attribuées aux attributs. Pour cela, on passe par des méthodes particulières appelées mutateurs

(ou "setters") qui vont modifier la valeur d’une propriété d’un objet. Le nom d’un mutateur est généralement : setNom_attribut() .

class Carte : # Définition de la classe

 '''Une carte d'un jeu de 32 ou 52 cartes '''

 def __init__(self, valeur, couleur) : # constructeur

 self.valeur = valeur # 1er attribut {de 2 à 14}

 self.couleur = couleur # {'pique', 'carreau', 'coeur', 'trefle'}

 def getAttributs(self) : # méthode 2 : accesseur

 return (self.valeur,self.couleur)

 def getValeur(self) : # méthode 3 : accesseur

 return self.valeur

 def getCouleur(self) : # méthode 4 : accesseur

 return self.couleur

 def setValeur(self,v) : # mutateur avec contrôle

 if 2 <= v <= 14 :

 self.valeur = v

 return True

 else :

 return False

>>> carte1 = Carte(7, 'coeur')

>>> carte1.getAttributs()

(7, 'coeur')

>>>carte1.setValeur(10)

True

>>> carte1.getAttributs()

(10, 'coeur')

Par exemple on va créer une carte carte1, un 7 de coeur puis modifier sa valeur en la passant à 10.

II.5. Exercice 2.

1. Créer le mutateur de l’attribut couleur sous la forme setCouleur(self,c) .

2. Créer une carte carte2, un Roi de coeur puis modifier sa valeur en la passant à une Dame.

3. Modifier la couleur de la carte carte2 en la passant à pique.

4. Modifier la carte carte2 en la passant à 8 de carreau.

5 La POO

III. Premier bilan

Classe, Attributs, Méthodes, Accesseur et mutateurs

• Le type de données avec ses caractéristiques et ses actions possibles s’appelle classe.

• Les caractéristiques (ou variables) de la classe s’appellent les attributs.

• Les actions possibles à effectuer avec la classe s’appellent les méthodes.

• La classe définit donc les attributs et les actions possibles sur ces attributs, les méthodes.

• Constructeur : la manière « normale » de spécifier l’initialisation d’un objet est d’écrire un
constructeur.

• L’encapsulation désigne le principe de regrouper des données brutes avec un ensemble de
routines (méthodes) permettant de les lire ou de les manipuler.

• Accesseur ou "getter" : une fonction qui retourne la valeur d’un attribut de l’objet. Par convention,
son nom est généralement sous la forme : getNom_attribut().

• Un Mutateur ou setter : une procédure qui permet de modifier la valeur d’un attribut d’un objet.
Son nom est généralement sous la forme : setNom_attribut().

Exemples :

class Carte: # Définition de la classe

 '''Une carte d'un jeu de 32 ou 52 cartes '''

 def __init__(self,valeur,couleur): # méthode 1 : constructeur

 self.valeur=valeur # 1er attribut valeur {de 2 à 14}

 self.couleur=couleur # 2e dans {'pique', 'carreau', 'coeur', 'trefle'}

 def getCouleur(self): # accesseur

 return self.couleur

 def setValeur(self,v): # mutateur avec contrôle

 if 2<=v<=14:

 self.valeur=v

 return True

 else:

 return False

IV. Notion d’agrégation

La conception d’une classe a pour but généralement de pouvoir créer des objets qui suivent tous le même modèle de fabrication.

Un objet dans la vraie vie, par exemple votre stylo, est composé d’autres objets : une pointe (ou plume), un réservoir d’encre,
éventuellement un capuchon et un ressort... Votre stylo est ce qu’on appelle un objet agrégat et son réservoir d’encre est donc un
objet composant.

IV.1. Exemple d’une agrégation par valeur (composition)

En parlant de stylo, voici un exemple très simple. Commençons par la définition de la classe composant Reservoir :

Fichier Reservoir.py

class Reservoir:

 ''' classe permettant de construire un réservoir d'encre pour des stylos toutes marques,

toutes dimensions '''

 def __init__(self, couleur) :

 ''' On se contente d'un seul paramètre pour l'exemple les dimensions ne seront donc pas

incluses dans cette description '''

 # un seul attribut toujours par souci de clarté

 self.couleur = couleur

 # Accesseur de self.couleur

 def getCouleur(self) :

 return self.couleur

Classe

Attributs :

Attribut1

Attribut2

…

Méthodes :

Méthode1()

Méthode2()

…

6 La POO

 # Mutateur de self.couleur

 def setCouleur(self, couleur):

 self.couleur = couleur

Maintenant, voyons la classe agrégat Stylo et son utilisation de la classe Reservoir :

Fichier stylo.py

from Reservoir import *

class Stylo :

 ''' classe permettant de construire un stylo avec un réservoir d'encre.

 On ne s'occupe pas de ses autres caractérisques'''

 def __init__(self, couleur) :

 ''' On se contente d'un seul paramètre pour l'exemple les dimensions ou autres composants ne

seront donc pas inclus dans cette description '''

 self.reservoir = Reservoir(couleur)

 # Accesseur du self.couleur de self.reservoir

 def getCouleur(self) :

 return self.reservoir.getCouleur()

 # Mutateur du self.couleur de self.reservoir

 def setCouleur(self, couleur) :

 self.reservoir.setCouleur(couleur)

Création simple d’un stylo rouge :

Fichier main.py

 from stylo import *

 pen = Stylo("Rouge")

print(pen.getCouleur())

Changeons la cartouche d'encre

pen.setCouleur("Bleu")

 ''' Attention, à éviter absolument même si possible, on casse ici le principe d'encapsulation

mais le résultat est le même à l'affichage'''

print(pen.reservoir.getCouleur())

>>> %Run main.py

Rouge

Bleu

Notez bien une chose : dans le fichier principal de votre programme, ici main.py, vous n’avez pas importé le fichier reservoir.py, vous
n’avez même pas besoin de savoir qu’il existe et encore moins de savoir comment il est conçu. Et pourtant, vous l’utilisez
indirectement : en instanciant la classe Stylo, vous instanciez également la classe Reservoir. Et vous obtenez un objet stylo un peu
plus complexe qu’il n’y parait.

Imaginez maintenant que vous vouliez un stylo quatre couleurs : oui, il vous faudra 4 instances de Reservoir dans Stylo. Ce qui
entraînera une modification des accesseurs et mutateurs. Et certainement une méthode de sélection de la couleur. Les possibilités
sont grandes.

Décomposition en fichiers

Cette architecture nécessite en général la création d’un fichier par classe. Elle permet de transformer une classe sans
toucher aux autres. Où tout simplement, de se partager le travail dans une équipe.

IV.2. Application à un jeu de cartes

Nous avons créé une classe Carte qui permet de créer une carte à jouer standard. Le paquet ou jeu de cartes est donc un objet
constitué (composé, agrégé) de 32 ou 52 cartes à jouer.

Si un jeu de carte est un objet, on peut donc définir une classe JeuDeCartes. Cette classe a (entre autres) pour attributs :

▪ 32 ou 52 instances (objets) de la classe Carte. Ces instances sont toutes différentes en valeur et en couleur : on ne veut pas
de doublon.

▪ le nombre de cartes que le jeu contient, soit 32, soit 52

7 La POO

class JeuDeCartes :

 def __init__(self,nombreCarte):

 # Tous les attributs ne sont peut être pas représentés

 self.nombreCarte = nombreCarte

 self.paquetCarte = []

 ...

 # Accesseur de l'attribut self.nombreCarte

 def getNombreCartes(self) :

 ...

 # Accesseur de self.paquetCarte

 def getPaquet(self) :

 ...

 # Méthode de création du paquet de cartes

 # on remplit la liste self.paquetCarte

 def creerPaquet(self) :

 ...

 # Méthode de distribution d'une carte à la fois

 # retourne une instance de Carte

 def distribuerUneCarte(self) :

 ...

 #méthode pour mélanger self.paquetCarte

 def melanger(self) :

 ...

1- self.paquetCarte est un attribut
2- On instancie la classe Carte dans la méthode creerPaquet
3- On peut rajouter un if nombreCarte==32 or 52
4- Car sinon dans la méthode creerPaquet, on n’aura pas toutes les cartes instanciées
5- Si l’argument nombreCarte n’est pas correct, on peut retourner un message d’erreur
6- La méthode creerPaquet() n’a pas besoin de paramètre autre que self car le nombre de carte est dans son attribut

nombreCarte
7- On utilise la méthode creerPaquet() quand on instancie le jeu de cartes (méthode __init__)
8- Il manque l’import de la class Carte

Exercice

1. Quel est le type de self.paquetCarte ?

2. Dans quelle méthode instancie t’on la classe
Carte ?

3. Que peut-on ajouter à la classe JeuDeCartes
pour empêcher de donner une valeur
différente de 32 ou 52 à l’attribut
self.nombreCarte ?

4. Pourquoi est-ce important de faire cette
vérification ?

5. Que pourrait-on faire si la valeur passée dans le
constructeur n’est pas correcte ?

6. Pourquoi la méthode creerPaquet() n’a pas
besoin de paramètre autre que self ?

7. Quand utilise t’on la méthode creerPaquet() ?

8. Que manque-t-il à ce code (en supposant les
méthodes totalement définies) pour pouvoir
être utilisé ? Faire une analogie avec l’exemple
du stylo.

